

Rodents and public health Yersinia pestis Rickettsia, Orientia → plague Leptospira **>** typhus → leptospirosis Leishmania Arenaviruses → leishmaniases → LCMV, Lassa, etc Hantaviruses Trypanosoma → Hantaan, Sin Nombre, etc → trypanosomiasis

Urban rodents and public health

Dominance of highly competitive and generalist rodent species (i.e. invasive species)

Impacts on public health

- **❖**facilitated pathogensøcirculation
- ***epidemics**
- *emergence processes through pathogens import, hybridization, etc

Higher risks in cities from developing countries due to í

***** overcrowding

* reduced access to medical care

***** insalubrity

* promiscuity with other animals

Niamey, capital town of Niger

- Created *ex nihilo* ~115 years ago
- 1.1 inhabitants (data 2009)
- Superficy >12,000 ha

Extensive urban and demographic growth during the last five decades

Rodents from Niamey

241 trapping sites2 types of traps14,500 night-traps

987 rodents8 species2 invasive species

In order to avoid misidentifications, all taxonomic assignments were confirmed using molecular methods (genotyping, sequencing, PCR-RFLP and/or karyotyping).

Arvicanthis niloticus
Cricetomys gambianus
Nannomys hausa
Taterillus gracilis
(Xerus erythropus)

One assemblage of « rural-like » species only found in fallow lands and cultivated areas of the city.

Another assemblage of strictly commensal species infeoded to human constructions (houses, markets, coach stations, etc).

Rodent-borne human pathogens in Niger

on T. lewisi imported by invasive black rats

 $Gauthier\ Dobigny^{a,b,*}, Philippe\ Poirier^c, Karmadine\ Hima^a, Odile\ Cabaret^{c,d}, Philippe\ Gauthier^b, Caroline\ Tatard^b, Jean-Marc\ Costa^{c,e}, Stéphane\ Bretagne^{c,d}$

Trypanosoma spp. (including invasive ones) Dobigny et al., 2011 Unpublished data

Leishmania spp. Unpublished data

Toxoplasma gondii Mercier et al., 2013

How may our data be helpful for modeling rodent-borne pathogen distribution at the city scale?

- ➤ Can we characterize the urban landscape heterogeneity using landscape metrics?
- ➤ Can we relate rodent occurrence and urban landscape?
- ➤ Ultimatly, can rodent-borne pathogens be related to urban landscape?

Probability maps of rodent species occurrence

Optimal linear interpolation (i.e. kriging)

Probability of presence/absence at each point

Probability map of Rattus rattus occurrence in Niamey

Probability map of Mastomys natalensis occurrence in Niamey

NB: This confirms co-occurrence analyses (all p<0.004), but extents the results to an explicitly spatialized framework.

Rodents occurrence and landscape metrics

with rats

N = 241mini landscapes

Mini-landscapes without rats

Localities with and without rats correspond to divergent landscape structures

Population genetics of the invasive black rat

N=232 individuals

17 microsatellite loci

Highly structured populations

Very limited gene flow

Some genetic signatures linking Gaya, Dosso and Niamey

Population genetics of the invasive black rat

What does it tell us about in terms of zoonotic diseases@control?

To be efficient, public health strategies must take into account:

- (1)Reservoir (and vector) species diversity,
- (2) Their relative spatial distributions in relationships with the urban landscape,
- (3)Processus at work (e.g. bioinvasions) that may deeply interfere with host dynamics, hence epidemiologic patterns.

What about rodent-borne pathogens in Niamey?

To be continuedí (*Trypanosoma* spp., gastro-intestinal nematodes, *Leptospira* spp.?)

Fofo Nagodé Thank you Merci

