

# The effects of past and future climate change on desert locust population dynamics

# Fanny Herbillon

#### PhD defense to obtain the Degree of Doctor

January 21, 2025



#### **Doctoral Examination Commitee**

| Arianne J. CEASE, Arizona State University   | Rapporteur |
|----------------------------------------------|------------|
| Uta BERGER, Dresden University of Technology | Rapporteur |
| Olivier GIMENEZ, CNRS, CEFE                  | Examiner   |
| Karine BERTHIER, INRAE                       | Examiner   |
| Christine MEYNARD, INRAE, UMR CBGP           | Supervisor |
| Cyril PIOU, FAO                              | Supervisor |
| Mohamed L. HAMOUNY, CLCPRO – FAO             | Guest      |







# The problematic of desert locust



Schistocerca gregaria



1km<sup>2</sup> swarm ≈ 80 million adults



20 countries treated (~130,000 km<sup>2</sup>)

The costs of fighting > US\$400 million

Harvest losses valued up to US\$2.5 billion

(FAO, Associated Press)



#### Fanny HERBILLON

PhD defense

#### Introduction Chapter 1 Chapter 2 Chapter 3 Discussion Occord Cocord Chapter 2 Chapter 3 Discussion Cocord C

**Locusts** = grasshopper (Acrididae, Orthoptera) able to form hopper bands and swarms and exhibit **phase polyphenism**.







#### To help manage the desert locust :

Is there a risk of outbreaks ? Where ? When ? Evolution in the future (short-term & long-term)

#### Fanny HERBILLON

PhD defense







 $\rightarrow$  Effect of management ?

(Tratalos et al, 2010)

PhD defense

0.6 - 0.8 0.8 - 1



# Past studies - Mechanistic

# Resource distribution on gregarization *Collett et al. 1998*



Hopper movement - Vegetation *Dkhili et al. 2017* 

#### Separation Cohesion Alignment + Attraction to vegetation





Collective movement - Polyphenism *Vernier et al. 2023* 

 $\rightarrow$  Theory confirmation vs Prediction

 $\rightarrow$  No large scale

| Introduction | Chapter 1<br>00000 | Chapter 2<br>00000000000 | Chapter 3<br>000000000 | Discussion<br>00000000 |  |
|--------------|--------------------|--------------------------|------------------------|------------------------|--|
| Study area   |                    |                          |                        |                        |  |



**CLCPRO** = Commission for the Control of the Desert Locust in the Western Region

Fanny HERBILLON

PhD defense



1985 - 2018





Fanny HERBILLON

PhD defense







# Expectations



Climate x Management ?





1985

1989 1993

1997

2001

Year

Fanny HERBILLON

1985 1989 1993

1997

2001

Year

PhD defense

2005 2009 2013 2017

#### January 21, 2025

2005 2009 2013 2017

| Introduction | Chapter 1 | Chapter 2    | Chapter 3  | Discussion |
|--------------|-----------|--------------|------------|------------|
|              | ●●●●O     | 000000000000 | 0000000000 | 00000000   |
| Results      |           |              |            |            |



Climate x Management ?

| Cluster | Temperatures |       | Precipitations |       | N/ana ann ant | Creation      |  |
|---------|--------------|-------|----------------|-------|---------------|---------------|--|
| Cluster | Mean         | Trend | Mean           | Trend | wanagement    | Gregarization |  |
| 1       | ++           | (***) | +++            | (***) | ~             | -             |  |
| 2       | ++           | (***) | +              | (*)   | ++            | +             |  |
| 3       | ++           | (***) | ~              | ~     | +             | -             |  |
| 4       | +            | (***) | ~              | 2     | ++            | +             |  |
| 5       | +            | (***) | +              | (*)   | +             | ~             |  |
| 6       | +            | (***) | ++             | ~     | NA            | NA            |  |



Fanny HERBILLON

| Intro:                      | duction     |                  | Cha<br>● ●      | apter 1<br>●●●O       | Chapt<br>000000             | er 2<br>00000 | Chapter 3<br>000000000 | Discussion<br>00000000 |
|-----------------------------|-------------|------------------|-----------------|-----------------------|-----------------------------|---------------|------------------------|------------------------|
| R                           | esult       | ts               |                 |                       |                             |               |                        |                        |
| <i>Gregariz</i><br>Temperat | ation trend | +                | Precipitatio    | ins<br>-<br>Climate x | Gregarization<br>Management | trend  ?      | Management             |                        |
| Cluster                     | Tempe       | ratures<br>Trend | Precipi<br>Mean | tations<br>Trend      | Management                  | Gregarizatio  | on                     |                        |
| 1                           | ++          | (***)            | +++             | (***)                 | ~                           | -             |                        |                        |
| 2                           | ++          | (***)            | +               | (*)                   | ++                          | +             |                        |                        |
| 3                           | ++          | (***)            | ~               | ~                     | +                           | -             | → Effective            | management             |
| 4                           | +           | (***)            | ~               | ~                     | ++                          | +             |                        |                        |
| 5                           | +           | (***)            | +               | (*)                   | +                           | ~             |                        |                        |
| 6                           | +           | (***)            | ++              | ~                     | NA                          | NA            |                        |                        |

| Intro           | duction     |         | Cha<br>• •   | apter 1<br>●●●O | Chapt<br>000000             | ter 2<br>00000 | Chapter 3<br>000000000 | Discussion<br>00000000 |
|-----------------|-------------|---------|--------------|-----------------|-----------------------------|----------------|------------------------|------------------------|
| R               | esult       | ts      |              |                 |                             |                |                        |                        |
| <i>Gregariz</i> | ation trend | +       | Precipitatio | ons<br>         | Gregarization<br>Management | trend          | Vanagement             |                        |
| Cluster         | Tempe       | ratures | Precipi      | itations        | Management                  | Gregarizatior  | n                      |                        |
| 1               | ++          | (***)   | +++          | (***)           | ~                           | -              |                        |                        |
| 2               | ++          | (***)   | +            | (*)             | ++                          | +              |                        |                        |
| 3               | ++          | (***)   | ~            | ~               | +                           | -              |                        |                        |
| 4               | +           | (***)   | ~            | ~               | ++                          | +              |                        |                        |
| 5               | +           | (***)   | +            | (*)             | +                           | ~              | → Compensa             | itory effect           |
|                 |             |         |              |                 |                             |                |                        |                        |

| Introd                      | duction              |         | Cha<br>• •   | apter 1<br>●●●O       | Chapt<br>000000             | er 2<br>00000 | Chapter 3<br>000000000 | Discussion<br>00000000 |
|-----------------------------|----------------------|---------|--------------|-----------------------|-----------------------------|---------------|------------------------|------------------------|
| R                           | esult                | ts      |              |                       |                             |               |                        |                        |
| <i>Gregariz</i><br>Temperat | ation trend<br>tures | +       | Precipitatio | ins<br>-<br>Climate x | Gregarization<br>Management | trend         | Management             |                        |
| Cluster                     | Temper               | ratures | Precipi      | tations               | Management                  | Gregarizati   | on                     |                        |
| 1                           | ++                   | (***)   | +++          | (***)                 | ~                           | -             |                        |                        |
| 2                           | ++                   | (***)   | +            | (*)                   | ++                          | +             | → Damage co            | ntrol                  |
| 3                           | ++                   | (***)   | ~            | ~                     | +                           | -             |                        |                        |
| 4                           | +                    | (***)   | ~            | ~                     | ++                          | +             |                        |                        |
| 5                           | +                    | (***)   | +            | (*)                   | +                           | ~             |                        |                        |
| 6                           | +                    | (***)   | ++           | ~                     | NA                          | NA            |                        |                        |

| Introduction | Chapter 1<br>●●●●● | Chapter 2<br>00000000000 | Chapter 3<br>000000000 | Discussion<br>00000000 |  |
|--------------|--------------------|--------------------------|------------------------|------------------------|--|
| Summary      | ,                  |                          |                        |                        |  |

Spatial and temporal trends are highly heterogeneous

Favorable climate conditions





→ The effects of climate change have been countered by increased management efforts!

Importance of interaction between climate and management at large scales





# → Develop a mechanistic model capable of reproducing desert locust population dynamics

#### Realist cartography of CLCPRO



- → Large-scale model

Population dynamics simulations → Gregarization phenomenon



→ Seasonal **migration** cycle

# Chap 3

*Climate change scenarios projection*  $\rightarrow$  Climatic variables only (temperature & precipitation)

```
Fanny HERBILLON
```

PhD defense



# What is an ABM?





#### PhD defense



# IntroductionChapter 1Chapter 2Chapter 3DiscussionDevelopment of theABM









#### PhD defense



#### PhD defense

#### 





Fanny HERBILLON













management,...



Use data independent of the

one in calibration to confirm

set of parameter selected for

the final model

Use of 4 types of errors, for temporal and spatial criteria, to find optimal values for parameters

Simulations under climate

change scenarios

#### PhD defense



PhD defense



# Climate change projections

# **Projected climate data**

**GCM = General Circulation Models** 





#### **SSP= Shared Socioeconomic Pathways**

Scenarios predicting future emissions based on societal choices



SSP3.7.0 = moderate SSP5.8.5 = pessimistic

**Projection = GCM x SSP** 





-20

-10

-20

-10





PhD defense





| Introduction | Chapter 1<br>●●●●● | Chapter 2 | Chapter 3<br>●●●●●●●●● | Discussion<br>00000000 |
|--------------|--------------------|-----------|------------------------|------------------------|
| Summary      |                    |           |                        |                        |

Assess how populations might respond to climate change in the future

# 3 key changes :

- Increase in gregarization frequencies
- Northward shift in gregarization areas
- Historical & New gregarization areas

Can help guide monitoring and preventive management











| Introduction | Chapter 1<br>●●●●● | Chapter 2 | Chapter 3 | Discussion<br>••••••0 |
|--------------|--------------------|-----------|-----------|-----------------------|
| Perspecti    | Ves                |           |           |                       |

# **Management in the model**

**Chapter 1**  $\rightarrow$  important effects of management  $\rightarrow$  CC x management interaction

Model



Calibrate with data from a period without management

Simulated control action ?

Constant mortality rate



Treatment/month/area parameter



| Introduction | Chapter 1<br>●●●●● | Chapter 2 | Chapter 3 | Discussion |
|--------------|--------------------|-----------|-----------|------------|
| <b>D</b>     | •                  |           |           |            |

# Perspectives



Topography



Mathias Kayalto : geomorphic variability  $\rightarrow$  gregarization



#### Fanny HERBILLON







# Acknowledgements













Fanny HERBILLON

PhD defense