# Inferring demography and selection from genomic time series data

Simon Boitard

INRAE, CBGP, Montpellier, France

Séminaire CBGP 14th January 2025

1/33

### 1 Context: why genomic time series?

### 2 The SelNeTime method

### 3 An Evolve & Resequence experiment in D. suzukii

<ロト < 回 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < ⊇ / 33

## 1 Context: why genomic time series?

### 2 The SelNeTime method

3 An Evolve & Resequence experiment in D. suzukii

## Standard Population Genetics Inference

from molecular data sampled at a single time.



## Standard Population Genetics Inference

from molecular data sampled at a single time.



**OBSERVATIONS** : genomic sequences

## Standard Population Genetics Inference

from molecular data sampled at a single time.



**OBSERVATIONS** : genomic sequences

# Confounding effects of demography and selection



#### Ignoring the true demography can lead to wrongly detect selection

# Confounding effects of demography and selection



Ignoring selection can bias population size inference

#### Various contexts and temporal scales:



Experimental evolution



Monitoring of wild populations



Ancient DNA

## Genomic time series

Temporal trajectories of allele frequencies informative about both demography and selection.



Genomic time series

- Arise in various contexts and temporal scales.
- Focus on a specific period of the evolutionary history.
- Allow (in principle!) disentangling demographic and selective effects within this period.

### 1 Context: why genomic time series?

### 2 The SelNeTime method

### 3 An Evolve & Resequence experiment in D. suzukii

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 10 / 33

#### Time series methodology:

- Cyriel Paris & Bertrand Servin, INRAE, GenPhySE, Toulouse, France
- Miguel de Navasués & Mathieu Uhl, Paul Bunel, CBGP

Fly experiment:

 Lily Cesari, Candice Deschamps, Arnaud Estoup, Julien Foucaud, Mathieu Gautier, Emilie Mendes, Laure Olazcuagua & Nicolas Rode ... CBGP

Molecular biology:

Anne Loiseau, CBGP
 Read mapping and variant calling:
 Mathieu Gautier

# Hidden Markov Model (HMM) (Bollback 2008)



- $X_k$  population allele frequency at time  $t_k$  (hidden)
- Y<sub>k</sub> sampled allele frequency at time t<sub>k</sub> (observed)
- $Q_k$  transition matrix from time  $t_{k-1}$  to time  $t_k$

# Wright-Fisher model



- Panmictic population, constant size N, non overlapping generations
- Neutral evolution : all alleles sampled with the same probability

$$E[X_{t+1}] = X_t$$

Selection : one allele more likely sampled due to higher fitness

$$E[X_{t+1}] = f_s(X_t)$$

13/33

イロト イヨト イヨト

## HMM Transition matrix

Depends on N, s and  $t_{k-1} - t_k$ .

• Example for N = 4:

$$\mathbf{Q} = \begin{array}{ccccc} 0/4 & 1/4 & 2/4 & 3/4 & 4/4 \\ 0/4 & 1/4 & 0 & 0 & 0 & 0 \\ 0.32 & 0.42 & 0.21 & 0.05 & 0.04 \\ 0.06 & 0.25 & 0.38 & 0.25 & 0.06 \\ 0.004 & 0.05 & 0.21 & 0.42 & 0.32 \\ 0 & 0 & 0 & 0 & 1 \end{array}$$

## Demography and Selection Inference

Exact (and fast) computation of the likelihood

$$P(Y_1,...,Y_n|N,s) = P(\overline{Y}|N,s) = P(\overline{Y}|Q_1(N,s),...,Q_n(N,s))$$

for any values of N and s

- **Inference of N** : connsider *p* independent loci and optimize  $P(\overline{Y}_1|N, s_1 = 0)P(\overline{Y}_2|N, s_2 = 0) \dots P(\overline{Y}_p|N, s_p = 0)$  over *N*.
- **2** Inference of s : for each locus *i*, optimize  $P(\overline{Y}_i|\hat{N}, s_i)$  over  $s_i$ .



# Wright-Fisher approximations

- Wright-Fisher model limited to  $N \approx 500$  for numerical reasons (Q of size  $N \times N$ ).
- Continuous approximations



## Wright-Fisher approximations

The Beta with Spikes distribution (Tataru *et al* 2019) is a very good approximation (Paris *et al*, 2019).



- Models Beta-with-Spikes and Wright-Fisher transitions.
- Infers N assuming s = 0 and / or s given N.
- **Simulate** genomic time series.
- Install https://pypi.org/project/selnetime/
- **Source code** https://forgemia.inra.fr/simon.boitard/snt
- Software note on BioRxiv, under review in PCI Math Comp Biol.

# Estimation of N



Estimation of Ne

- 10 sampling times, *s* = 0, *N* = 100, 1000 loci.
- Better estimation with the BwS than with the Beta model (Hui and Burt 2015) for large  $\delta_t$  (blue).

# Estimation of s



t = 1...10, N = 100, BwS model.
 Unbiased estimation of s, as in Paris et al<sub>a</sub>(2019). (E) = (2019) → (E) = (2019)

|          | compareHMM             | SelNeTime              | SelNeTime         |
|----------|------------------------|------------------------|-------------------|
| Nb. loci | estimation of <i>s</i> | estimation of <i>s</i> | estimation of $N$ |
| 100      | 39.27s                 | 28.7s                  | 6.12s             |
| 1000     | 360.01s                | 36.21s                 | 14.23s            |
| 10000    | 3530.47s               | 96.95s                 | 87.83s            |

• 10 sampling times, dt = 10, one core.

■ Fixed time to compute all transitions (28s) + 0.007s per locus.

- Joint estimation of demography and selection to avoid biases.
- Variable population size or selection intensity.
- PhD Paul Bunel (2024 2027, CBGP / GenPhySE).

### 1 Context: why genomic time series?

### 2 The SelNeTime method

#### 3 An Evolve & Resequence experiment in D. suzukii

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < C 23 / 33

# Local adaptation to host plant (Olazcuagua et al, 2022)



<ロト < 回 ト < 言 ト < 言 ト ミ の < で 24/33

## Evolve & Resequence experiment



<ロ > < 回 > < 回 > < 言 > < 言 > こ の < で 25/33 Time series methodology:

- Cyriel Paris & Bertrand Servin, INRAE, GenPhySE, Toulouse, France
- Miguel de Navasués & Mathieu
  Uhl, Paul Bunel, CBGP

## Fly experiment:

 Lily Cesari, Candice Deschamps, Arnaud Estoup, Julien Foucaud, Mathieu Gautier, Emilie Mendes, Laure Olazcuagua & Nicolas Rode ... CBGP

### Molecular biology:

Anne Loiseau, CBGP

Read mapping and variant calling:

Mathieu Gautier

## Genetic diversity structuring



27 / 33

## Analysis of Evolve & Resequence data



3 lines in period 1, 9 lines (3 per fruit) in period 2

Inferred N



29 / 33

# Candidate regions under selection $(\hat{s} \neq 0)$



p-values obtained from the HMM and 'cumulated' using a local score approach (Fariello *et al*, 2017).

Inferred N



31 / 33

- Explore candidate regions, especially those that are specific to one single fruit.
- Compare with candidate regions detected on wild populations PoolSeq data from different fruits.

#### Time series methodology:

- Cyriel Paris & Bertrand Servin, INRAE, GenPhySE, Toulouse, France
- Miguel de Navasués & Mathieu Uhl, Paul Bunel, CBGP

## Fly experiment:

 Lily Cesari, Candice Deschamps, Arnaud Estoup, Julien Foucaud, Mathieu Gautier, Emilie Mendes, Laure Olazcuagua & Nicolas Rode ... CBGP

### Molecular biology:

Anne Loiseau, CBGP

Read mapping and variant calling:

Mathieu Gautier