

Epigenetic signatures of social status in free-ranging spotted hyenas (*Crocuta crocuta*)

Wildlife Epigenetics

Dr. Alexandra Weyrich

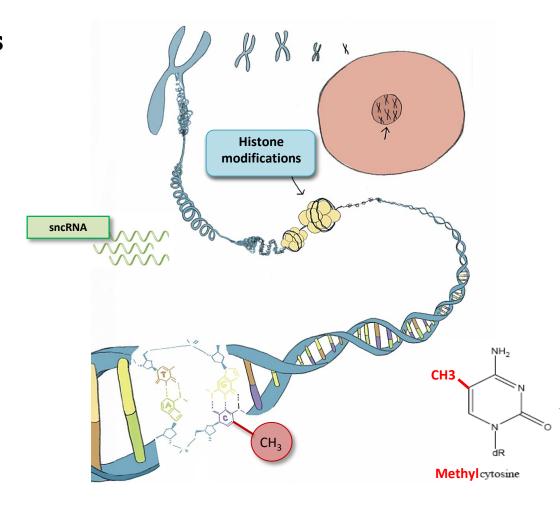


https://doi.org/10.1038/s42003-024-05926-y

Epigenetic signatures of social status in female free-ranging spotted hyenas (Crocuta crocuta)

Epigenetics

- > Regulation of gene activity <u>without</u> a change in the DNA sequence.
- ➤ Epigenetic modifications are dynamic and reversible, which is in contrast to modifications in the genetic code.
- > Epigenetic patterns in germ cells can be inherited to next generation(s).


(Bird A. 2007 Nature Reviews)

Epigenetic mechanisms

- DNA methylation
- Histone modifications
- Small non-coding RNAs

Function:

> Regulation of gene activity

Epigenetic modifications

- 1) **Early development** incl. imprinting, cell differentiation (Monk et al. 1987)
- 2) **Genome stability**, e.g. heterochromatin, silencing of transposable elements (Egger et al. 2004)
- 3) **Response to environmental alteration** (Lea et al. 2016, Tung et al. 2012; Weyrich et al.)

Captivity

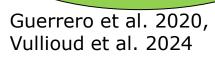
Territory behaviour

Somerville et al. 2019; Weyrich et al. in prep. Weyrich et al. 2022

Epigenetic modifications

Temperature

Weyrich et al. 2016 a,b, 2020


Weyrich et al. 2018a

Nutrition

Weyrich et al. 2018b

Soil & Speciation

Li, Weyrich et al. 2021

Social

environment

Question:

Does the social environment

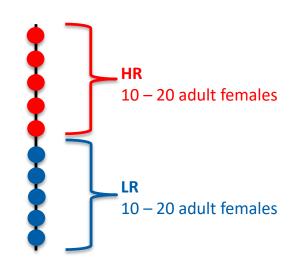
-"social status"-

translate into status-specific epigenetic profiles

across age classes?

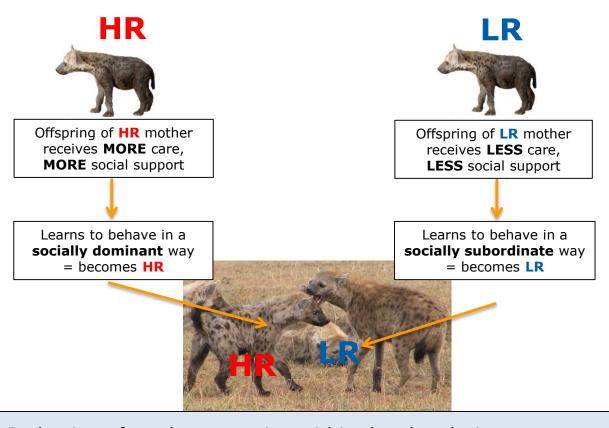
Model species

Spotted hyenas (*Crocuta crocuta*)



Picture by S. Ferreira, M.L. East

IZW long-term project: Continuous monitoring since **1987** in the Serengeti National Park, Tanzania


& Social organization

Linear dominance hierarchy

Large social groups "clans", similar to many primates, stable female-dominated (philopatry) (Hofer & East 1993)

Behavioural transmission of social status

Reduction of costly aggression within the clan during encounters

Social status

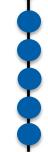
Emergent property determined my dyadic interactions

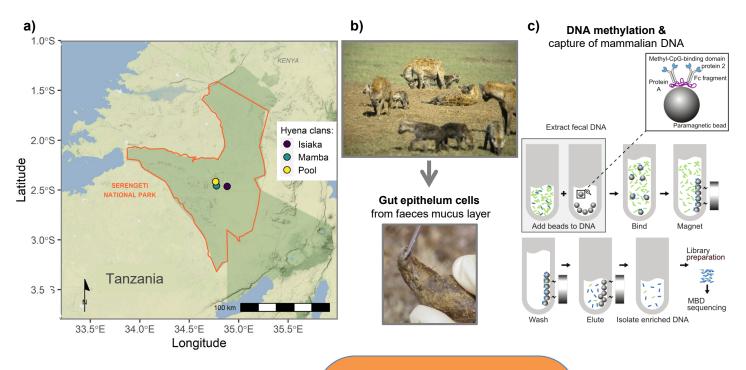
Linear hierarchy

dominant behavior

- + access to resources
- + foraging close proximity to den
- + lactation frequency
- commuting distances
- + health
- + earlier onset of reproduction (Darwinian fitness)

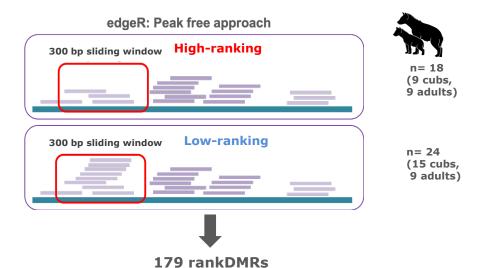
subordinate behaviour


- access to resources
- foraging
- lactation frequency
- + commuting distances
- health
- Darwinian fitness


East et al. 2009

High social rank (**HR**)

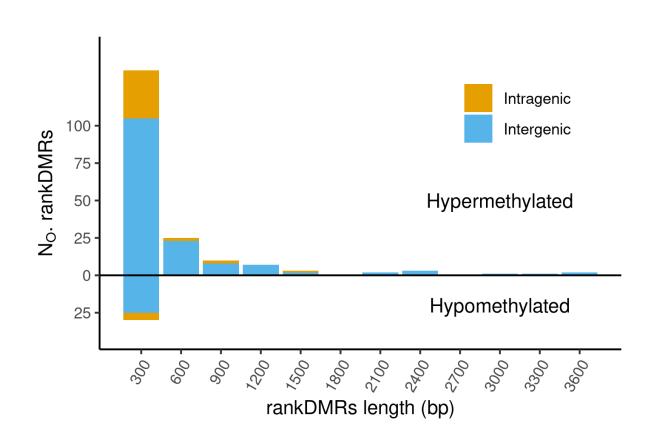
Low social rank (LR)


Sampling and methodical approach

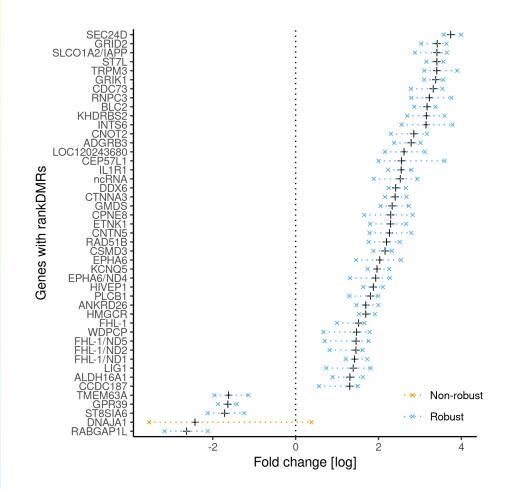
Credits: A) Map by M. Gicquel, B) Pictures M.L.East, C) Workflow adapted from Chiou & Bergey 2018 **NEW** sample material

Methylome sequencing Enriched fragments mDNA-enrichment Library preparation 150 bp PE -Dynabeads® **NEW** genome sequence Mapping to genome (Shao et al. 2022)

Differentially methylated regions `DMRs'


→ 42 rankDMRs overlapped with genes

26 hypo and **153 hypermethylated** in low-ranking females


Promoter	TSS	Start- codon	Exon	Intron	Stop- codon	Intergenic region
2	1	1	6	39	2	137

NEWCustom-made annotation

Hypermethylated and hypomethylated regions in high-ranking vs low-ranking spotted hyenas

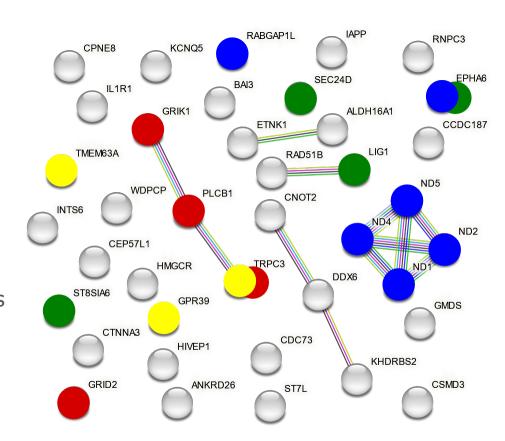
Validation of hyper and hypomethylated genes

Validation of rankDMRs

- Subsampling the 42 samples into 6 subsets, each containing 35 individuals
- We randomly split the individuals into 6 groups and removed 1 group at a time
- Run 6 times, only for the DMR positions in the full dataset
- Redo methylation analysis
- DMR robust when all subsets showed an hypermethylation or hypomethylation
- Subsets independently (p-value ≤ 0.05).

Results:

- → Of total **179 rankDMRs**, 30 were not consistent and excluded
- → Of the 42 rankDMRs overlapping with **45 genes** only DNAJA1 was excluded

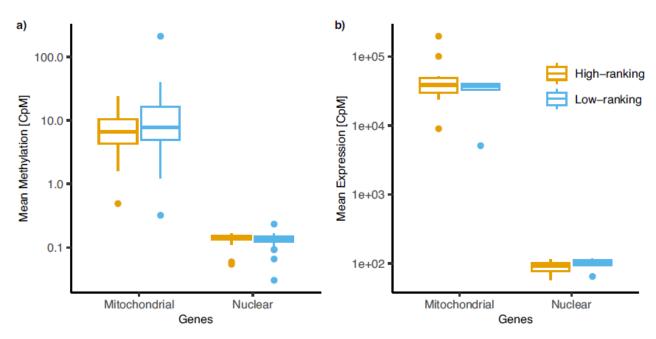

Network analysis of rankDMR genes

Biological function by network analysis

- 1) energy conversion
- 2) glutamate receptor signalling
- 3) immune response
- 4) ion transportation

Findings:

- May reflect access to resources
- Set of biomarkers for social status in a wild population
- Detectable in a non-invasive sample material, to use in other wildlife studies



Discriminative power of DMRs between high and low-ranking female spotted hyenas

Differentially methylated regions (DMRs)*	Out-of-bag error	
rankDMR total	~ 21 %	
rankDMR validated	~ 19 %	
rankDMR excluded	~ 45 %	
mean methylation	~ 50 %	

Out-of-bag error with different methylation measures as covariates.

Mitochondria gene activity and methylation in high and low-ranking female spotted hyenas

Greater abundance of methylation and expression in mitochondrial DNA and RNA (n= 16 individuals).

Mean DNA methylation of mitochondrial and nuclear DNA per window and individual in count per million bases (CPM).

Mean RNA expression per gene and individual in count per million bases.

Conclusions

- "Social status goes under your skin across age"
- Indentification of status-specific DMRs
- Energy conversion may reflect access to resources
- Set of biomarkers for social status in a wild population
- Detectable in a non-invasive sample material

and can be used for other wildlife studies.

SAW PAKT 2018 - 2022 - Leibniz Cooperative Excellence

Epigenetic stability and plasticity of social environmental effects

Prof. Michael Hofreiter Potsdam University

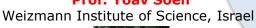
Prof. Moshe Szyf McGill University, Canada

GENOMICS

IZW

Fickel

East


Hofer

SOCIAL **EPIGENETICS**

EPIGENETICS

SOCIAL BEHAVIOUR, FITNESS, SPOTTED HYENA

Prof. Yoav Soen

IMMUNOLOGY

EUKARYOME

Inter-Species Epigenetics - sInSpEc

- Individual sDiv postdoc project
- **Dr. Walter Durka** (Helmholtz Center for Environmental Research (UFZ) in Halle and iDiv member)

 Prof. Christina Richards (University of South Florida and Eberhard Karls Universität Tübingen)

Dr. Marc Schmidt (MWSchmid GmbH, Switzerland)

Thank you for your attention! Questions?

Alexandra.Weyrich@idiv.de

