

Effet des interactions inter- et intraspécifique et de la variabilité intraspécifique sur le comportement alimentaire de coléoptères carabiques

Alice Charalabidis

Making a choice

Making a choice

Making a choice

Choice is context dependent

Choice depends on the context

Effect of individuals variability on choice

Are all individuals similar in their choices?

Effect of individuals variability on choice

Biological control: Regulation of pests (such as animals or weeds) by other organisms. Biocontrol agents are either predator, parasites, pathogens or competitors of the pest.

Ladybirds and aphids

Parasitic wasps and caterpillars

Carabids and seeds of weeds

Objective of biological control: A reliable and effective ecosystem service to reduce use of chemical inputs, such as pesticides

The carabid beetle : A candidate for the regulation of weeds in arable fields:

A credible candidate for the biological

control of weeds in arable fields

Estimated predation of 1150 seeds/m²/day

(Honek et al. 2003)

Effect on the seed bank turnover

(Bohan et al., 2011)

Attack the seeds on the ground

The carabid beetle : A candidate for the regulation of weeds in arable fields:

A credible candidate for the biological

control of weeds in arable fields

Estimated predation of 1150 seeds/m²/day

(Honek et al. 2003)

Effect on the seed bank turnover

(Bohan et al., 2011)

Attack the seeds on the ground

Yet, in-field predation rates are highly variable in time and space

The carabid beetle : A candidate for the regulation of weeds in arable fields:

A credible candidate for the biological

control of weeds in arable fields

Estimated predation of 1150 seeds/m²/day

(Honek et al. 2003)

Effect on the seed bank turnover

(Bohan et al., 2011)

Attack the seeds on the ground

Yet, in-field predation rates are highly

variable in time and space

Not yet a predictable ecosystem service

Current knowledge of carabid feeding behaviour could explain variation in predation rates

Carabid beetles can differ in their diet

Different potential roles in the biocontrol of weeds

Current knowledge of carabid feeding behaviour could explain variation in predation rates

Carabid beetles can differ in their diet Carabid beetles have feeding preferences

knowledge on relative preference

Different potential roles in the biocontrol of weeds

Specific trophic link between some carabid species and some weed species

Current knowledge of carabid feeding behaviour that could explain variation in predation rates

Carabid beetles can differ in their diet Carabid beetles have feeding preferences

Multiple choice

Not much on a carabid individual's decision making process

Carabids communities are composed of several different seedeating species

Carabid individuals may face competition for food items when foraging

Carabid individuals may also face predation interference when foraging

Predatory interactions can impact individual choices for food items

Making an accurate choice is time consuming

Foraging – Vigilance Conflicting time-consuming tasks

Between individuals interactions could impact carabid individual feeding choices

Carabid species might differ in their feeding choices and sensitivity to competition and predation interference, depending on the relative importance of seeds in their diet

Between individuals of two different species:

The relative importance of seeds in the diet of a species can also impact individual feeding choices

Carnivorous		🔺 Granivorou
\mathbf{V}		
	Obligate Oppo	ortunistic
	omnivore or	nnivore
_	sensitivity to ri	isk -

Individuals of a given species might also differ in their feeding choices and sensitivity to competition and predation interference

Between individuals of two different species:

The relative importance of seeds in the diet of a species can also impact individual feeding choices Carnivorous Granivorou Carnivorous **Obligate** Opportunistic omnivore omnivore In a given species: Differ in temperament? Differ in energetic requirement

Sex effect?

Inter-individual variability can impact carabid feeding choices

Schematic diagram of the interference interactions (inter and intraspecific) and individual effects impacting carabid decision making

Inter-individual variability

Choice of a metric to assess change in carabid decision making processes

Choosiness = Effort or energy invested in resource assessment

(Jennions & Petrie 1997)

Gives insight into an individuals overall interest in a given resource

Being choosy is time consuming

Change in individual level of choosiness is a good metric to assess individuals change in decision making processes

Choosiness = Effort or energy invested in resource assessment

(Jennions & Petrie 1997)

Gives insight into an individuals overall interest in a given resource

Being choosy is time consuming

Effort or energy invested should change according to the encountered intra and/or interspecific interactions

Perceived predation risk tasks tradeoff = change in level of choosiness?

How to measure change in the level of choosiness?

Use of choice paradigm:

Gives insight into an **individual's preference** for a given resource over another one

I take one over two edible items

I have a feeding preference

How to measure change in the level of choosiness?

Use of choice paradigm:

Gives insight into an **individual's preference** for a given resource over another one

I take one over two edible items

I have feeding preference

Use of no-choice paradigm:

Gives insight into an **individual's interest** in a given resource

I invest time prior to accepting the only edible item available

Use of a no-choice paradigm helps assess an individual's levels of choosiness

- Can vary according to the context in which individuals forage
- Can vary between individuals

- Easy to measure:
 - Latency to first acceptance
 - Number of items consumed or rejected in a given time span
- Easy to analyze:
 - Independent variables

Which species of carabids to use in test?

Poecilus cupreus

Common **omnivorous** species Abundant in fields

Will two carabid species differ in their level of choosiness for different species of seeds of weeds?

H: A carabid granivorous species will have a lower choosiness for seed of weeds in comparison to an omnivorous one (17)

Interest for seeds of two abundant carabid species Mean consumption obtained from a choice – test paradigm The granivorous The omnivorous **Relative preference** Harpalus affinis Poecilus Cupreus Carabid species tested separately C. bursa-pastoris T. officinale S. vulgaris V. arvensis 5 4 Mean daily seed consumption 3 2 1 0 Poecilus cupreus Harpalus affinis (Petit et al., 2014) 18

Interest for seeds of two main carabid species

The amount of seeds consumed by *P. cupreus* differed between weed species

P. cupreus (omnivorous)

Consumption differed between weed species (P < 0.05)

T. officinale and *S. vulgaris* were eaten more eagerly than *C. bursa-pastoris* and *V. arvensis seeds* (P < 0.05)

Seeds of *V. arvensis* and *C. bursapastoris* are in overall overlooked

The amount of seeds consumed by *H. af*finis did not differed between weed species

Consumption did not significantly differ between weed species (P = 0.88)

Both tested carabid species differed in their foraging behaviour

Will two carabid species differ in their level of choosiness for different species of seeds of weeds?

The two carabid species differed in their foraging behaviour

H. affinis

- Ate all species of seeds
- Only start eating after 5hours

Do individuals adjust their level of choosiness according to the intra and interspecific interactions they encounter?

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

H: Intensity of the behavioural adjustment to risk depends on:

- the relative importance of seeds in the carabid species diet
- the relative perception of the risk danger

Used two other carabid species for testing interactions: one that eats a lot of seeds and one that is a invertebrate predator

Preys on :

- invertebrate predator (Kromp, 1999)
- other carabid species (Currie et al. 1996)

Readily eats a large amounts of seeds in laboratory conditions (Petit et al. 2014)

Use of olfactory cues instead of actual individuals to avoid confounding effects

Papers saturated with **olfactory cues** instead of actual individuals

Avoid confounding effects of direct interaction between the focal individual under test, and the intraguild predators and competitors

Choice of a seed species that will allow change in individual levels of choosiness

Multiple choice test

Set up for the assessment of changing in level of choosiness, under different interference interactions

Set up for the assessment of changing in level of choosiness, under different interference interactions

Harpalus affinis N= 290

Observation: 1 hour

Assessment of choosiness:

- Latency to first seed acceptance
- Total seed consumption

To control for change in seed encounter between treatments – confounding effect:

• Space use

P. cupreus ate more seeds than *H. affinis* in the control treatment

(Charalabidis et al., 2017; Charalabidis et al., 2019)

P. cupreus ate more seeds than *H. affinis* in the control treatment

(Charalabidis et al., 2017; Charalabidis et al., 2019)

28

Overall, *P. cupreus* has lower choosiness for seeds of *T. officinale* than *H. affinis* (Charalabidis et al., 2017; Charalabidis et al., 2019)

Space use did not differ between treatments for both carabid species

Two different potential scenario:

Higher space use = higher seed encounter

Lower space use = lower seed encounter

Space use:

- Did not differ between treatments (~60%)
- was similar between the two carabid species

Higher seed consumption is due to a reduction in level in choosiness rather than higher seed encounter

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

P. cupreus = no effect of the tested intra and interspecific interactions

H. affinis = Behavioural adjustment to the tested intra and interspecific interactions

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

Tribu : Pterostichini Bonelli, 1810 vs Tribu : Harpalini Bonelli, 1810

H: Both carabid species will adjust their level of choosiness according to the intra and interspecific interactions they encounter

This result has also been observed in a different experiment + higher reduction in choosiness : Charalabidis et al. 2023 (31)

Do individuals differ in their level of choosiness for seeds

H: Level of choosiness will differ between carabids according to their individual characteristics

Results demonstrate inter-individual variability

Results demonstrate inter-individual variability

Do all individuals of a species follow a similar decision making process ?

Do personality traits exist in carabids and can they explain the observed variability in the level of choosiness?

Animal personalities = Individual temperament

Do personality traits exist in carabids and can they explain the observed variability in the level of choosiness?

Animal personalities = Individual temperament

Proactive individuals show higher exploration behaviours than reactive ones

10 minutes video - recording

Harpalus affinis N= 110

Total distance moved:

Space use:

Reactive

Same total distance moved but lower space use

Could morphological characteristics or sex differences explain variation in levels of choosiness?

Could morphological characteristics or sex differences explain variation in levels of choosiness?

Immunity traits could differ between wild individuals and between sex and impact individual levels of choosiness

Risk tolerance might also differ between individuals based on their immune traits

Sex differences and higher pathogen encounter rates and pesticide exposure could induce variation in individual immune defenses

High variability in immune defenses could exist in our tested individuals

How to measure immunity traits in carabids: use of three key insect immune parameters 1) <u>Phenyloxidase (PO) activity and 2) total PO activity</u>

How to measure immunity traits in carabids: use of three key insect immune parameters 1) Phenyloxidase (PO) activity and 2) total PO activity

How to measure immunity traits in carabids: use of three key insect immune parameters 1) Phenyloxidase (PO) activity and 2) total PO activity

Which combination of personality traits, morphological differences, sex differences and immunity traits best explain individuals variability in the level of choosiness?

Measure of tested individual's level of choosiness

Assessment of individual levels of choosiness:

Latency to first seed acceptance

Proportion of individuals eating (feeding motivation)

Harpalus affinis **N= 101**

Measure of tested individual's level of choosiness

Harpalus affinis **N= 101** Personality could be linked to higher immune defenses and thus higher energetic requirements

Which combination of personality traits, morphological differences, sex differences and immunity traits best explain individuals variability in the level of choosiness?

41

H. affinis individuals differ in personality

10 minutes video - recording

Differences in levels of choosiness are not explained by personality traits in *H. affinis*

Number of hemocytes was related to individual levels of choosiness

Link between number of hemocytes and level of choosiness was a sex effect

No link between carabid immune scores and personality

Levels of choosiness differed between the sexes

Which combination of personality traits, morphological differences, sex differences and immunity traits best explain individuals variability in the level of choosiness?

Personality traits exist in carabids

Which combination of personality traits, morphological differences, sex differences and immunity traits best explain individuals variability in the level of choosiness?

Personality traits exist in carabids

Which combination of personality traits, morphological differences, sex differences and immunity traits best explain individuals variability in the level of choosiness?

Which of personality traits, morphological differences, sex or immunity traits best explain individuals variability in level of choosiness?

Improve our understanding of carabid feeding choices

Major effect of sex and perspectives

Eggs could be more costly than sperm explaining the differences observed between sex (Hayward & Gillooly, 2011)

Effect of the season on change of choosiness?

Temporal monitoring of change in level of choosiness in carabids

Perspectives and personality traits in carabids

Personality exists in carabids

Is linked to exploration behaviour -> might be linked to dispersal

Effect of environmental quality on carabids personality? (Tremmel & Muller, 2013)

Exploration behaviour, and thus dispersal tendency, could be linked to individuals status

Use of behavioural data on biocontrol

Objective of Biological control: A reliable and effective ecosystem service to reduce use of chemical inputs, such as pesticides

Individual scale

Behavioural flexibility

Species interactions

Choosiness

Knowledge of an individual behaviour could help to improve biological control

Acknowledgments

CMIS

Thanks for SCIENCE & IMPACT your attention!! Agroécologie Dijon Unité de Recherche

SCIENCES

UBFC

UNIVERSITÉ

BIOGÉ

BOURGOGNE FRANCHE-COMTÉ