

Séminaire CBGP

Azores Islands as a Model System: Understanding the Biodiversity, Ecological and Genetic Patterns, along Gradients of Anthropogenic Disturbance

Lurdes BORGES SILVA | Montpellier, France 09 – avril-2024

Azores framework (Study area)

1

3

2

State-of-the-art (novelty of main research results)

Postdoc (AlInterAz Biopolis Project)

Island	Santa Maria	São Miguel	Terceira	Graciosa	São Jorge	Pico	Faial	Flores	Corvo
Santa Maria	0	100	265	345	330	340	360	575	<mark>585</mark>
São Miguel	100	0	170	250	250	260	280	500	510
Terceira	265	170	0	95	120	125	145	360	370
Graciosa	345	250	95	0	75	80	85	270	280
São Jorge	330	250	120	75	0	20	40	250	260
Pico	340	260	125	80	20	0	25	240	250
Faial	360	280	145	85	40	25	0	235	245
Flores	575	500	360	270	250	240	235	0	15
Corvo	585	510	370	280	260	260	245	15	0

Population: 236,413 inhabitants (including 3346 foreigners), corresponding to an average number of 310 inhabitants per km².

Azores Climate

Temperate or humid mesothermal climate with oceanic features:

Mild temperatures with small annual thermal amplitude

The average annual temperature is around 17°C

High relative humidity

The average annual values of 73 % to 87%.

Rainfall distributed throughout the year, being more abundant in the winter months

- The average annual precipitation is 1930 mm
- increasing with altitude and from east to west of the archipelago,

this is, between 966 mm on Graciosa and 2647 mm on Flores Island

The seawater temperature fluctuates between 14-15°C in February and 22-24°C in August.

PORDATA, 2022

From a geostructural point of view, Azores are located in the "Triple Junction of the Azores" the contact area of the Eurasian, North American and African tectonic plates.

Azores Geology

The present geomorphology of the Azorean islands results primarily from the intense volcanic activity that was at the basis of the archipelago's formation, although destructive processes have also occurred, such as subsidence, responsible for the generation of several calderas, that characterize the Azores.

The geological age of the islands varies, with Santa Maria being the oldest, about 6.01 million years old (the only one with Miocene fossiliferous deposits), and the youngest being Pico, around 250 thousand years old (Demande *et al.* 1982). However, the ages of the islands is still a matter of controversy, while in the last ten years several papers describing /reviewing the structure and evolution of individual islands (e.g. Hildenbrand et al. 2008, 2012; Sibrant et al. 2015; Ramalho *et al.* 2017).

Human

settlement

(15th)

1439

1st Orange Export (18th century) Coccus hesperidum (Linnaeus, 1758)

"...closed in wild bush, and completely inaccessible and impenetrable, there was no place to explore its interior."
(Gaspar Frutuoso, 1522-1591)

6000 spp.

José do Canto G: Peter Wallace 2000 spp. 1852-1856

1854

António Borges Gardener: François J. Gabriel

José Jacome Correia G: Peter Wallace

Biggest crisis in the Azorean forest (native and exotic) 1938-1945

As a source of energy, for military forces (II World War) and for pasture establishment and cereal crops

Serra da Tronqueira (São Miguel Island)

1956

Forestry Services established its activity

Serra da Tronqueira (São Miguel Island)

2024

Production Forest Cryptomeria japonica Cupressaceae MODELANDIS GROUP Project funded by the Azorean Government (Florícolas) Catalog database of plant species in the Azores

2019-2022

Updated list of the vascular plant flora of the Azores (Floriculture Companies "produce and distributors", Gardens, Parks, Farms, Woods, Viewpoints, Garden squares etc..)

Indigenous Taxa

Risk Assessment Hawaii/Pacific Weed Risk Assesment Australian Weed Risk Assessement

Interesting region to be used as a model, in studies devoted to diversity pattern changes, associated with anthropogenic activity, and to the potential ecosystem services originated by different vegetation types.

2007 Graduate

2012 Master

UNIVERSITÉ DE

____ ____Biology №

Biotechnology Engineering

Biodiversity and Plant Biotechnology

"Population genetics and phylogenetic study of the genus *Tolpis* in the Azores and Madeira" Supervisor: Dr Mónica Moura "Contribution of tree age determination and biomass estimation models for management of exotic woodland in the Azores" Supervisor: Dr Luís Silva

Research Centre in Biodiversity and Genetic Resources is to develop world-class research in the areas of biodiversity and evolutionary biology.

University of Porto

School of Agriculture

Secretary of State Culture

University of Azores

ISA - Instituto Superior de Agronomia/

Directorate-General for Cultural Heritage/

Research Groups

Framework: Invasive Plant Species on Islands (Azores Archipelago)

Contribution of tree age determination and biomass estimation models for management of exotic woodland in the Azores

PhD Project (3 years)

Higher calorific values

Low ash content

Authors

International Conference on Dynamics, Games and Science
DGS 2014: Modeling, Dynamics, Optimization and Bioeconomics II pp 463-484 | Cite as

Authors and affiliations

Development of Allometric Equations for Estimating Above-Ground Biomass of Woody Plant Invaders: The Case of *Pittosporum undulatum* in the Azores Archipelago

Lurdes Borges Silva 🖂 , Patrícia Lourenço, Nuno Bicudo Ponte, Vasco Medeiros, Rui Bento Elias, Mário Alves, Luís Silva

L. Borges Silva ^{a,b,c,*}, A. Teixeira ^a, M. Alves ^b, R.B. Elias ^d, L. Silva ^a

Dendrochronology Approach

Biomass and Bioenergy 109 (2018) 155-165

Research paper

Biomass valorization in the management of woody plant invaders: The case of *Pittosporum undulatum* in the Azores

L. Borges Silva^{a,b,c,*}, P. Lourenço^{d,e}, A. Teixeira^a, E.B. Azevedo^f, M. Alves^b, R.B. Elias^g, L. Silva^a

REASON

Annual Total biomass ((Mg.year-1 dry weight)

aria A. Ventura^{1,2} & Luis Silv

OPEN Taxonomic, structural diversity and carbon stocks in a gradient of island forests rdes C. Borges Silva^{1,200} Diogo C. Pavão^{1,2} Rui B. Elias^{3,4} Mónica Moura¹

Assessment of biodiversity and Azorean forests ecosystem services

DOS ACORES

Community level (Taxonomic and Strutural Diversity)

✓ Evaluate the structure/composition of forest community – reveal the ecological integrity, variation along the gradient, and the contribution of each forest type

Ecosystem level: Total Carbon Stock (trees/soil/leaf litter)

 \checkmark Estimate the biomass and the carbon accumulation, along a gradient of forest types.

✓ A characterization of the soil and leaf litter.

Ecological Services | Total Carbon Stock

		Exotic	Woodla	nd				Natural Forest					Production Forest									
		Pico		São Mig	guel	Terceira		Pico		São Mig	guel	Terceira	Terceira		-	São Mig	guel	Terceira	a			
ATT (m)	m	272.4	a	349.8	ab	202.2	a	683.8	de	616.2	cde	711.1	e	491.7	bc	538.3	cde	507.9	bcd			
ALI (m)	se	13.7		44.6		37.6		57.7		33.2		33.5		47.9		55.0		35.4				
TATEA	m	16.7	d	15.2	bc	16.5	cd	13.8	ab	13.1	a	13.0	a	15.1	bc	13.6	a	14.3	ab			
IMEA (°C)	se	0.3		0.3		0.4		0.4		0.3		0.2		0.4		0.4		0.2				
DUEA	m	2059.1	abc	1644.8	ab	1254.5	a	3117.1	d	2616.5	cd	2695.4	cd	2732.7	cd	2349.5	bcd	2208.6	bc			
PMEA (mm)	se	214.1		159,7		82.7		267.5		158.9		135.3		249.1		179.8		116.3				
DID (E) (or)	m	87.7	a	91.8	b	90.0	ab	95.4	cd	95.8	cd	97.9	d	92.4	bc	95,5	cd	95.8	cd			
KHMEA (%)	se	1.1		0.7		0.9		0.8		0.6		0.3		1.1		1.0		0.3				

Table 4. Environmental variables found at 90 forests in the Azores, from three islands (Pico, São Miguel, and Terceira) and three forest types (Exotic Woodland, Natural Forest, and Production Forest). Mean and standard error for each environmental parameter. For each row, different letters indicate significant differences (p < 0.05) according to the results of a Tukey test applied after ANOVA.

scientific reports Borges Silva et al., 2022

Ecological Services | Total Carbon Stock

OPEN Taxonomic, structural diversity and carbon stocks in a gradient of island forests

Lurdes C. Borges Silva^{1,253}, Diogo C. Pavão^{1,2}, Rui B. Elias^{3,4}, Mónica Moura^{1,2}, Maria A. Ventura^{1,2} & Luis Silva^{1,2}

Carbono Total* (Mg C ha⁻¹) = Total Biomass** x Teor de C árvore***

* Above and below ground biomass (IPCC-Temperate) **Species-specific allometric equations (eg. Borges Silva *et al.*, 2018)

*** Default values (IPCC): Tempearte forest (48%) Conifers (51%)

.Fisical and chemical parameters Carbon

www.nature.com Adapted: Borges Silva et al, .2022

Taxonomic Diversity

Island	Taxa												
	Enden	nic	Native		Exotic	Total							
	N	%	N	%	N	%							
São Miguel	24	30	24	30	32	40	74						
Terceira	20	41	17	35	12	24	45						
Pico	30	44	26	38	12	18	62						

Table 1. Plant species richness at the three types of forests sampled on three islands in the Azores archipelago. Endemic taxa only occurring in the Azores; Native taxa that colonized the Azores without human intervention, also occurring in other regions; and Exotic taxa that were intentionally or accidentally introduced by human activities⁵⁹.

• São Miguel (for the 3 forest types), shown the highest number of taxa, although with the highest proportion of exotic elements.

scientific reports

OPEN

Borges Silva et al., 2022

Taxonomic, structural diversity

and carbon stocks in a gradient

Lurdes C. Borges Silva^{1,21:1}, Diogo C. Pavão^{1,2}, Rui B. Elias^{1,4}, Mónica Moura^{1,2} Maria A. Ventura^{1,2} & Luis Silva^{1,2}

of island forests

 Pico Island forests, present high contribution of endemic and native taxa.

Diversity Indices and Eveness			Exot	Exotic Woodland Natur							orest					Production Forest					
			Pico		São Miguel		Terceira		Pico		São Miguel		Terceira		Pico		São Miguel		Terceira		
		m	4.8	a	7.1	a	3.8	a	20.6	b	16.8	b	16.3	b	4.2	a	5.7	a	3.4	a	
Local diversity - Effect of forest type	u	se	0.5		0.8		0.3		1.2		2.6	Production Forest São Miguel Terceira Pico São Miguel Terceira 16.8 b 16.3 b 4.2 a 5.7 a 3.4 a 2.6 0.6 0.5 0.7 0.4 2.4 ab 6.4 de 4.9 cde 2.2 ab 3.1 abc 2.4 ab 0.9 0.2 0.3 0.6 0.5 0.6 0.5 2.2 ab 3.1 abc 2.4 ab 0.9 0.2 0.3 0.6 0.5 0.7 0.4 ab 23.2 bc 21.2 b 6.4 a 8.8 a 5.8 a 3.1 0.5 0.7 1.2 0.9 2 2.8 d 1.3 ab 1.6 bc 1.1 a 0.2 0.0 0.1 0.2 0.1 1 a									
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ab																			
	þ	se	0.3		0.6		0.3		0.3	1	0.9		0.2		0.3		0.6		0.5		
Effect of island and forest type	γ	m	6.6	a	11.3	a	5.4	a	27.5	с	23.2	bc	21.2	b	6,4	a	8.8	a	5.8	a	
Effect of Island and forest type		se	0.8		1.6		0.4		1.4		3.1		0.5		0.7		1.2		0.9		
	ц	m	1.5	abc	1.9	c	1.3	ab	3.0	d	2.8	d	2.8	d	1.3	ab	1.6	bc	1.1	a	
	п	se	0.1	11.3	0.1		0.1		0.1		0.2		0.0		0.1		0.2		0.1		
Evenness Effect of forest type	T	m	0.8	cd	0.8	bcd	0.8	abc	0.9	d	0.9	d	0.9	d	0.7	ab	0.8	abc	0.7	a	
Lvenness Lheur of forest type	E	se	0.0		0.0	100	0.0		0.0		0.0		0.0		0.0	1.	0.0		0.0		

Table 2. Plant taxonomic diversity found at 90 forests in the Azores, from three islands (Pico, São Miguel, and Terceira) and three forest types (Exotic Woodland, Natural Forest, and Production Forest). Alpha, beta and gamma diversities, Shannon diversity (H) and Evenness (E). Mean and standard error for each diversity parameter. For each row, different letters indicate significant differences (p < 0.05) according to the results of a Tukey test applied after ANOVA.

Regarding taxonomic diversity, there was ample evidence that Natural forests harbored the highest plant diversity levels and Production forests the lowest.

MODELANDIS GROUP

Climatic Change

Modelling the effects of climate change on the risk of expansion of seven invasive plant species in oceanic islands (Azores)

Regional Strategy for the Control and Prevention of Invasive Alien Species

within the scope of the project "LIFE IP AZORES NATURA (LIFE17 IPE/PT/0000010)"

Gunnera tinctoria (Gunneraceae)

Pittosporum undulatum (Pittosporaceae)

(Gunneraceae)

Solanum mauritianum (Solanaceae)

Leycesteria formosa (Caprifoliaceae)

Arundo donax (Solanaceae)

Hydrangea macrophylla Hedychium gardnerianum

(Zingiberaceae)

Direção Regional do Ambiente e Alterações Climáticas

Methodology

Таха	TSS	AUC	Воусе				
Gunnera tinctoria	0.70 ± 0.024	0.92 ± 0.009	0.85 ± 0.113				
Hedychium gardnerianum	0.92 ± 0.003	0.99 ± 0.001	0.98 ± 0.025				
Solanum mauritianum	0.92 ± 0.004	0.99 ± 0.001	0.92 ± 0.072				
Leycesteria formosa	0.61 ± 0.007	0.88 ± 0.004	0.99 ± 0,007				
Pittosporum undulatum	0.90 ± 0.001	0.98 ± 0.002	0.97 ± 0,031				
Arundo donax	0.87 ± 0.006	0.98 ± 0.001	0.99 ± 0,004				
Hydrangea macrophylla	0.83 ± 0.006	0.97 ± 0.002	0.98 ± 0,022				

<u>CMIP6</u> Projections of Species Distribution

RCP 4.5 RCP 8.5

2021 - 2040 | 2041 - 2060 | 2061 - 2080 | 2081 - 2100

Risk Groupshigh risk
> 80%Medium risk
50- 80%lower risk
< 50%</th>

Hydrangea macrophylla (Thunb.) Ser.

Native (Asia: China, Japan, Korea) Invasive (North Spain, NZ)

high risk > 80% ↑ probability of occurrence (all scenarios, all islands, Natural Parks)
 ↑ values of habitat suitability (all scenarios, all islands)

Preferential habitats: laurel forest, juniperus forests, margins of lakes, peat bogs, hedgerous along roads and agricultural trails (up to 1000 m altitude)

NeoBiota 89: 135–160 (2023) doi: 10.3897/neobiota.89.109164 https://neobiota.pensoft.net

A gen-reviewed open-access journal

Genetic and morphological insights into the Carpobrotus hybrid complex around the world

 Ana Novoa¹, Heidi Hirsch², María L. Castillo¹, Susan Canavan^{1,3}, Luís González⁴, David M. Richardson^{1,5}, Petr Pyšek^{1,6},
 Jonatan Rodríguez^{1,7}, Lurdes Borges Silva^{8,9,10}, Giuseppe Brundu¹¹, Carla M. D'Antonio¹², Jorge L. Gutiérrez^{13,14}, Megan Mathese¹⁵, Sam Levin^{16,17}, Luís Silva^{8,9,10,18}, Johannes J. Le Roux^{5,19}

Colaborations
 South Africa
 Czech Republic

ASSESSMENT OF INVADED HABITATS BY GUNNERA TINCTORIA (MOLINA) MIRB. (GUNNERACEAE)

ON SÃO MIGUEL ISLAND, AZORES

✓ Cleaning actions

Azorean endemics

Lower numbers of endemic plant species in the Azores compared to other Macaronesian archipelagos such as, the Canary Islands.

One potential cause of the perceived lower number of Azorean endemics is the **lack of detailed, multifaceted studies of morphological variation** and/or gene flow within and among different Azorean lineages.

Morphological and molecular studies of several genera have suggested that **more species should be recognized** than were included in the floristic review of the Azores.

(Mónica Moura and Luís Silva)

DIVERGE GROUP

Genus Tolpis is remarkable biogeographically because, most of these species are Macaronesian endemics.

Jarvis (1980), recognized that 10 of the 12 species

Genus Tolpis morphological characters:

- usually anual or perenial
- herbaceous
- rosulate leaves
- capitula arranged in corymbs or panicles
- yellow florets, styles short
- cypselas possess long pappus setae
- Coastal vegetation, higher altitude

Genus Tolpis Madeira and Azores (until now)

Genus Tolpis

DIVERGE GROUP

Borges Silva et al., 2012 & 2016 (SSRs)

Bayesian analysis performed with STRUCTURE

occurrence of a differential grouping between individuals from Azores and Madeira populations

DIVERGE GROUP

Taxonomic reassessment of Tolpis (Asteraceae) in the Azores and Madeira archipelagos with description of new species

Borges Silva L., Silva L., Sequeira M.M., Crawford D.J.

Mort M.E., Kelly J.K., Kerbs B., Mari M.A., Romano C.G., Elias R.B., Moura M.

In prep.

Taxonomic reassessment of Tolpis (Asteraceae) in the Azores and Madeira archipelagos with description of 7 new species Morphological Measurements Seventy-six quantitative and qualitative morphological characters, from a total of 349 specimens corresponding to 122 populations. (9 Azores islands + 2 Madeira islands)

Here we propose a taxonomic and nomenclatural revision of the Azorean *Tolpis* species, including seven new species never before described for the archipelago.

"Transfer of skills and capacity building"

The BIOPOLIS project:

- ✓ funded European H2020 Teaming program;
- ✓ aims to transform the CIBIO research laboratory in Porto into a Center of Excellence for Research, in the fields of biodiversity, agrobiodiversity and ecosystem services;
- ✓ the University of Montpellier as a partner, support the BIOPOLIS research center in this skills transfer project.

BIOPOLIS

cibio

'Close encounters in Atlantic islands' - Unravelling arthropod-alien plant multitrophic interactions in the Azores islands

Team: Denise NAVIA ; Luís SILVA, Carole KERDELHUE; Jean-Pierre ROSSI, Jean-Claude STREITO, Alian MIGEON, Phillipe AUGER, Emmanuelle JOUSSELIN, Marie-Stephane TIXIER, Armelle COEUR D'ACIER, Eric PIERRE, Lurdes BORGES SILVA.

AlinterAz Multitrophic interactions involving terrestrial arthropods

AlInterAz

Gunnera tinctoria (Gunneraceae)

Solanum mauritianum (Solanaceae)

Pittosporum undulatum (Pittosporaceae)

Leycesteria formosa (Caprifoliaceae)

Hydrangea macrophylla Hedychium gardnerianum
(Hydrangeaceae)(Zingiberaceae)

Arundo donax (Solanaceae)

Laurus nobilis Lauraceae

Laurus azorica

Along a gradient of increasing anthropogenic impact in the Azores archipelago

Terra Nostra Garden *Camelia Japonica* (Theaceae)

Coastal vegetation Disturbed areas

Mountain forests Disturbed areas

Old Orange Crops

A - Arhtropod communities associated with alien plants:

1-Do alien plants present in the Azores island host alien herbivore arthropods and what is the associated diversity (including natural enemies)?

2-Have endemic phytophagous arthropods adapted to invasive plants in the Azores islands and what is the associated diversity?

B - Tritrophic interactions (host plants-phytophagous-predators/parasitoids):

1) Are tritrophic interactions similar on alien & endemic/naturalized host plants?

2) Do the arthropods that successfully colonized the exotic plants exhibit high genetic diversity? What is the distribution

of the genetic diversity of the phytophagous species that successfully colonized alien plants in the Azores?

3) Are ecosystem traits affecting interactions?

4) Do ecosystem anthropogenic influences affect communities and its multitrophic interactions and how?

C- On ecological services provided by arthropods:

1) What regulation service offer the local phytophagous in terms of invasive plant management? 2) Could some arthropod species be managed to help on invasive plant management? (an approach of conservation biological control).

D- On biosecurity issues:

1) Are there biosecurity issues regarding invasive arthropods present for the Azores (expansion), Portugal and other areas in Europe (invasion)?

AlInterAz

Two main actions

Action 1 (Exploratory 1st year)

Taxonomic characterization of arthropods communities, associated with invasive plants in the Azores (at species/genus levels).

- ✓ Azores Field Expeditions (1st | 23 april 6 may)
- ✓ Morphological analysis
- ✓ DNA bardocing/Phylogenetic analysis

Action 2 (2nd year) Ecological studies

Unravelling genetic diversity and ecosystem factors influencing interactions in arthropod communities associated with alien plants in the Azores

*Detailed planning of this action will depend on Action I results

"Transfer of skills and capacity building"

BIOPOLIS project BIOISLE and UMR CBGP colaboration

- ✓ a 'new compartment' for the CIBIO-Azores research line on plant invasion ecology;
- ✓ increase CIBIO skills in functional group analysis;
- \checkmark enhancing the knowledge of the Azorean diversity ;
- ✓ the enrichment of reference entomological and acarological collections in Portugal and France;
- ✓ better targeting of the areas and plants to be monitored as part of the early detection of biological invasions.

cibio

BIOPOLIS

Azorean Biodiversity Platforms

https://azoresbioportal.uac.pt

UNIVERSIDADE DOS AÇORES

Biodiversity and Evolutionary Biology

INRA

<u>lurdes.cb.silva@uac.pt</u> <u>lurdesborgesilva@gmail.com</u>

Merci beaucoup