CBGP Seminar Presentation

Modelling the dispersal of invasive species using landscape variables

Pedro Mourato Catela Nunes

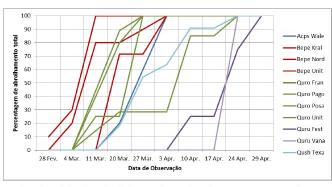
UNIVERSIDADE De Lisboa

Index

- 1. Personal Background
- 2. Introduction of Invasive Biology & Dispersal Modelling
- 3. Model Species
- 4. Article 1 Local scale Least-cost path model
- 5. Article 2 Large scale diffusion model
- 6. Article 3 local scale epidemilogical celular based model
- 7. Post-Doc Overview

Pedro Mourato Catela Nunes

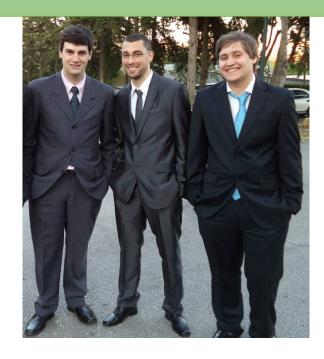
2011 to 2014 - Bachelor in Biology University of Lisbon (ISA)



Final Project: "Comparing the herbivory between native and exotic forest species found in two arboreta from the REINFFORCE international network"

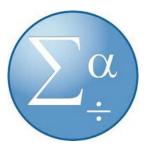
2 – Leaf phenology

Figura 1. Evolução da percentagem dos indivíduos de cada espécie-proveniência que chegaram ao nível fenológico das folhas de abrolhamento total na Tapada da Ajuda.



Legenda: Wale – País de Gales, Kral – Eslováquia, Nord – França (Norte), Fran – França, Pago – Espanha, Posa – Croácia, Unit – Reino Unido, Fest – França (Este902), Vana – Espanha (País Basco litoral), Texa – EUA (Texas).

2 - Damage assessment


Quadro 2 — Quadro com os tipos de estragos estudados baseado no protocolo Damage assessment — a field guide", do proieto FunDivEUROPE.

3 – Statistical AnalysisCompare leaf herbivory between Trees Species and Proveniences

GLM analysis

Pedro Mourato Catela Nunes

2014 to 2017 – Master in Natural Resources Management and Conservation University of Lisbon (ISA) and University of Évora

Class: GIS and Remote Sensing Applied to Natural Resources Management

Thesis: "Honeydew producers in eucalypts and associated native fauna"

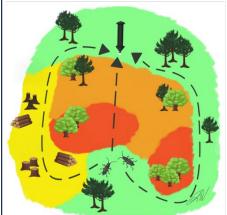
Honeydew producers in eucalypts and associated native fauna

PMC Nunes - 2017 - search.proquest.com

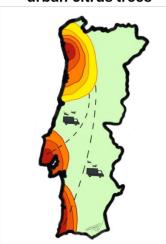
[PDF] utl.pt

Pedro Mourato Catela Nunes

2018 to 2023 – PhD in Forestry Engineering and Natural Resources University of Lisbon (ISA)


Modelling the dispersal of invasive species using landscape variables

Pedro Mourato Catela Nunes


SCIENTIFIC ADVISORS:

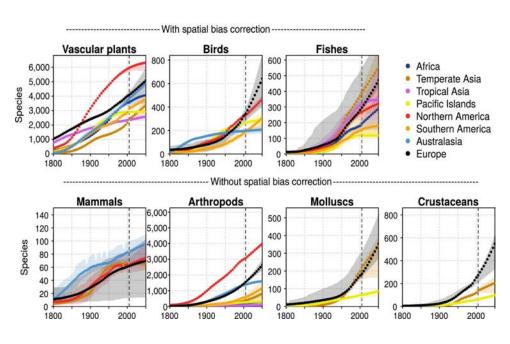
Ph.D. Manuela Rodrigues Branco Simões Ph.D. José Carlos Franco Santos Silva Ph.D. Hervé Jactel Chapter 1. Introduction


Chapter 2. Modelling
Monochamus
galloprovincialis dispersal
trajectories across a
heterogeneous landscape to
optimize monitoring by
trapping networks

Chapter 3. Modelling the invasion dynamics of the African citrus psyllid: The role of human-mediated dispersal and urban and periurban citrus trees

Chapter 4. Patterns of invasibility in agricultural landscapes: are spatiotemporal epidemiology approaches helpful?

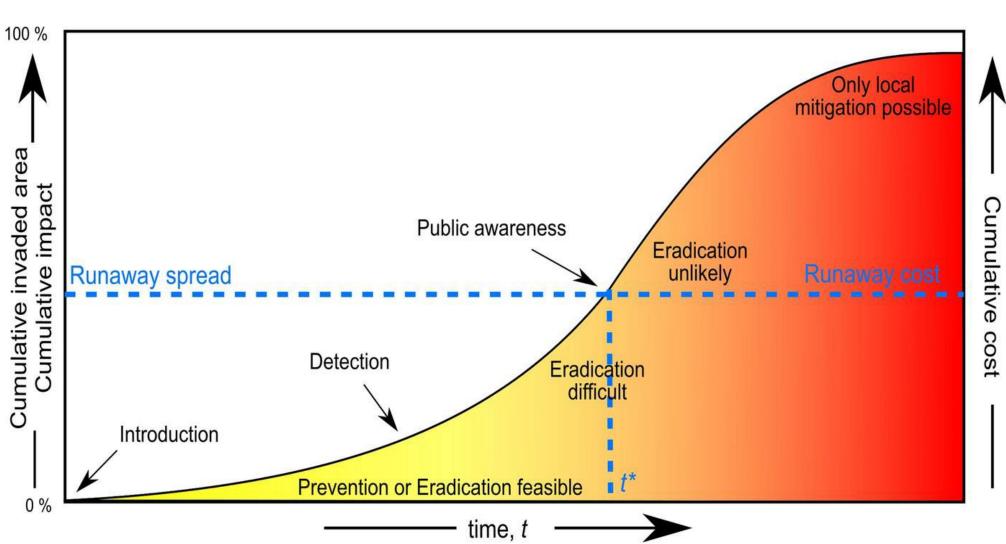
Chapter 5. Conclusions


THESIS PRESENTED TO OBTAIN THE DOCTOR DEGREE (Ph.D.) IN FORESTRY ENGINEERING AND NATURAL RESOURCES

Biological Invasions

A threat to biodiversity and human welfare

Cost of biological invasions in the USA \$1216.28 billion Multiregional / unspecified \$1165.30 \$28.83 \$1.11 \$2.06 \$17.31 \$0.63 \$1.04 billion billion billion billion billion billion billion


Alarming rising trend of Biological Invasions!!

Invasion curve and management strategies

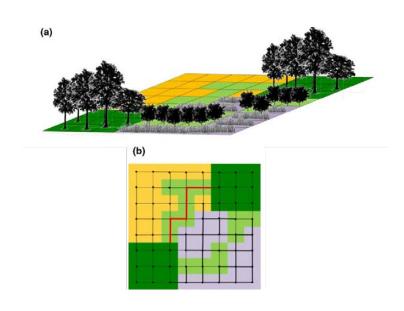
- 1. Introduction
- 2. Establishment
- 3. Expansion
- 4. Saturation

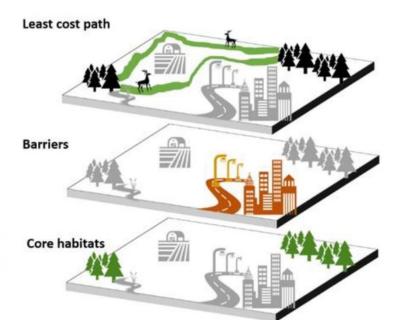
Dispersal of Insects

Motivated to improve fitness

Active Dispersal

Passive Dispersal


Dispersal of Insects

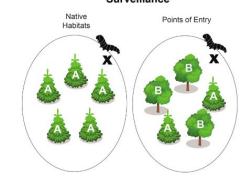

Continuous spread x Stratified spread

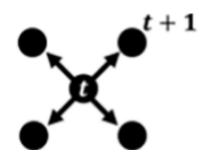
Range radius Time Time Time Time Time

Liebhold AM, Tobin PC. 2008. Annu. Rev. Entomol. 53:387–408

Landscape Heterogeneity Habitat Variability

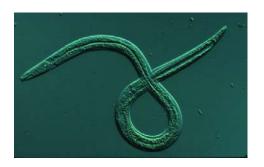
Dispersal modelling aims at improving the understanding of the dispersal mechanisms of invasive species


Risk Analysis


Reaction diffusion models

Early Detection

Integrodifference equation models



Control

Two Model Invasive Species

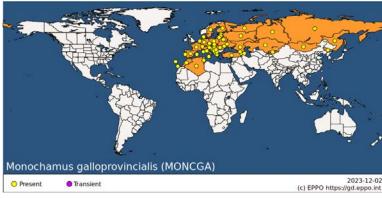
Pine wood nematode

Monochamus Galloprovincialis

Trioza erytreae

Citrus Greening disease Huanglongbing (HLB)

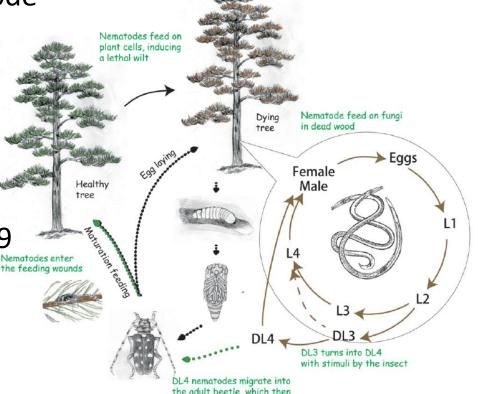
Candidatus Liberibacter


Monochamus galloprovincialis

Native species to Europe and Asia

Pine Trees host plants

Vector of the Pine wood nematode


Pine wood nematode

American native species

Invasive in Asia and Europe

First detected in Portugal in 1999

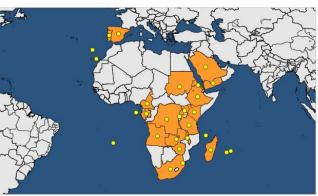
Pine wilt disease

Pinewood nematode represents a great threat to Europe

Monitoring trapping grids are currently mandatory for all European Union country members

(Commission Implementing Decision 2012/535/EU of 26 September 2012)

Important to improve the understanding of the vector's spread pattern in the landscape.



Map 1- Demarcated areas for the containment/eradication of PWN outbreaks in th

Trioza erytreae

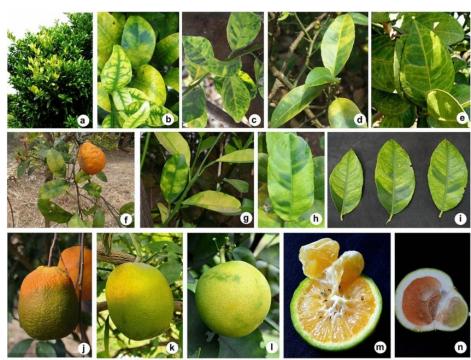
- Exotic species from Tropical Africa
- Citrus host plants
- Vector of the greening disease
- Can settle under a variety of ecological conditions such as in equatorial, arid, and warm temperate climates
- High fecundity and dispersal capacity
- Reported in the mainland of Spain and Portugal in 2014 and 2015 respectively.

Greening disease

Why is it so important?

Considered to be the WORST citrus disease worldwide, no cure

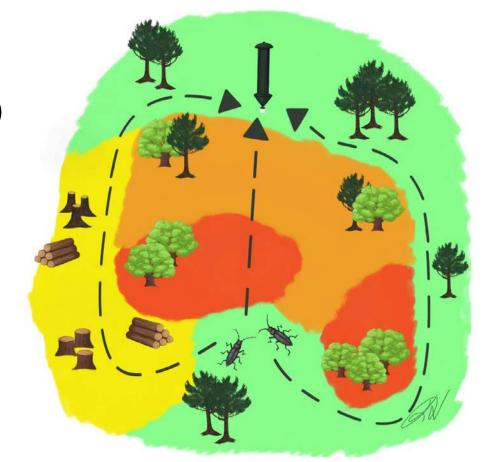
Disease caused by the transmission of the *Candidatus* Liberibacter bacteria



Diaphorina citri

Responsible for the loss of 74% of the citrus production in Florida from 2005 to 2019

Cryptic symptoms


Das et al. 2021

Local Scale Least-cost Path Model

Modelling *Monochamus galloprovincialis* dispersal trajectories across a heterogenous forest landscape to optimize monitoring by trapping networks

Published in Landscape Ecology, 36, 931-941.

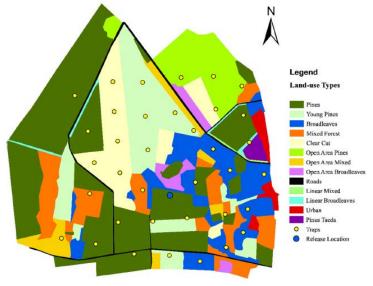
Pedro Nunes (ISA) Manuela Branco (ISA) Inge Van Halder (INRAE) Hervé Jactel (INRAE)

Monochamus galloprovincialis

Objectives

Analyze the effect of landscape heterogeneity on the vector's dispersal

Develop a method to locate the origin of captured insects in a systematic network of pheromone traps

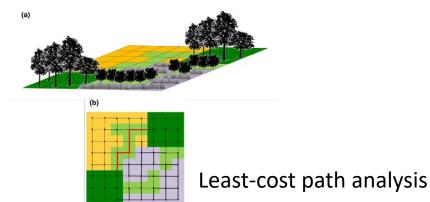


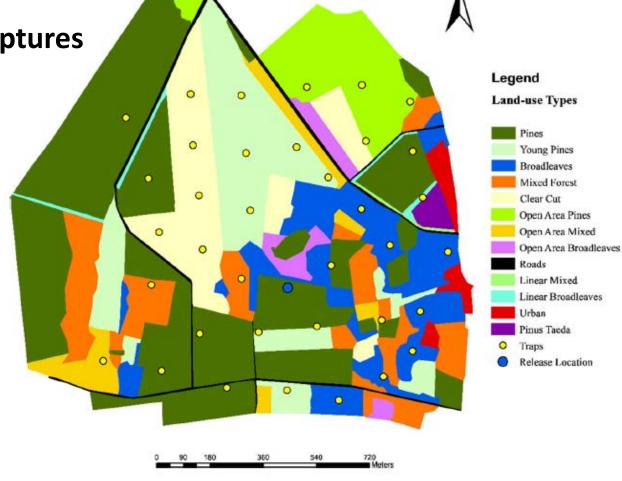
Mark-Release Recapture

Landes de Gascogne forest in Bordeaux

Release of 2747 marked individuals

Placement of 36 baited traps heterogenous landscape


1. Calculate the friction values of each land-use


type in the landscape using LCP analysis

Correlation between least-cost paths and recaptures

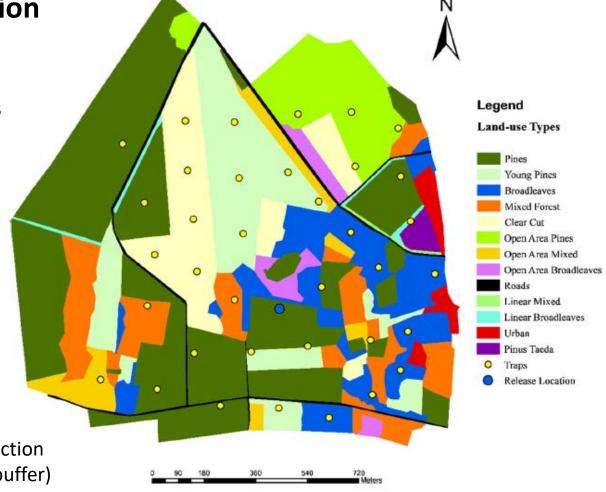
Land-use Types	Control	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13
Pines	1	4	1	1	1	1	1	1	1	1	1	1	1	1
Open Area Pines	1	1	4	1	1	1	1	1	1	1	1	1	1	1
Open Area Mixed	1	1	1	4	1	1	1	1	1	1	1	1	1	1
Open Area Broadleaves	1	1	1	1	4	1	1	1	1	1	1	1	1	1
Roads	1	1	1	1	1	4	1	1	1	1	1	1	1	1
Young Pines	1	1	1	1	1	1	4	1	1	1	1	1	1	1
Clear Cut	1	1	1	1	1	1	1	4	1	1	1	1	1	1
Broadleaves	1	1	1	1	1	1	1	1	4	1	1	1	1	1
Mixed Forest	1	1	1	1	1	1	1	1	1	4	1	1	1	1
Pinus Taeda	1	1	1	1	1	1	1	1	1	1	4	1	1	- 1
Urban	1	1	1	1	1	1	1	1	1	1	- 1	4	1	- 1
Linear Broadleaves	1	1	1	1	1	1	1	1	1	1	1	1	4	1
Linear Mixed	1	1	1	1	1	1	1	1	1	1	1	1	1	4
R²	0.263	0.073	0.184	0.232	0.252	0.252	0.311	0.289	0.359	0.300	0.263	0.263	0.268	0.267

Iterative optimization process (Highest R²)

Study site in the Landes de Gascogne forest in Bordeaux

2. Estimate the barycentre of the infestation

Barycentre Equation:

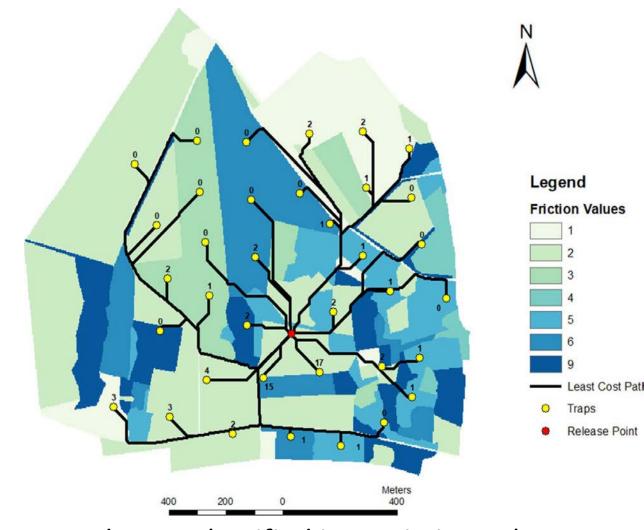

$$X_B = \frac{\sum_{i=1}^n x_i}{n} \qquad Y_B = \frac{\sum_{i=1}^n y_i}{n}$$
 X & Y Coordinates

Euclidean Distance Barycentre:

$$X_B = \frac{\sum_{i=1}^n x_i. w_i}{\sum_{i=1}^n w_i} \quad Y_B = \frac{\sum_{i=1}^n y_i. w_i}{\sum_{i=1}^n w_i} \xrightarrow{\text{Weighted by}} \text{Recapture Values}$$

Least Cost Path Barycentre:

$$X_B = \frac{\sum_{i=1}^n x_i. w_i. F_i}{\sum_{i=1}^n w_i. F_i} \quad Y_B = \frac{\sum_{i=1}^n y_i. w_i. F_i}{\sum_{i=1}^n w_i. F_i} \quad \text{Weighted by surrounding friction values (100m buffer)}$$



Landscape classified into 13 land-use types

Land-use Friction Values:

- 1 Open areas
- 2 Pines
- 3 Clear cut
- 5 Broadleaves
- 6 Young Pines
- 9 Mixed Forest

68 out of 2747 marked insects were recaptured

Landscape classified into Friction values

Invasion Barycentre Estimation

Euclidean

Paths and recaptures

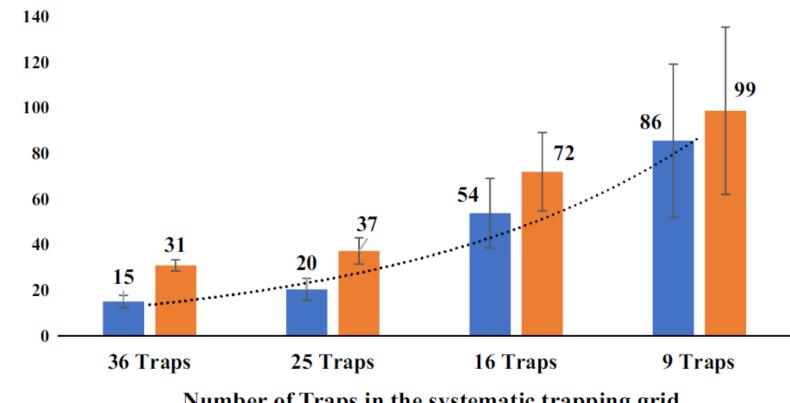
 $R^2 = 0.263$

Accuracy = 31m

Least-cost path

Cost paths and recaptures

 $R^2 = 0.627$

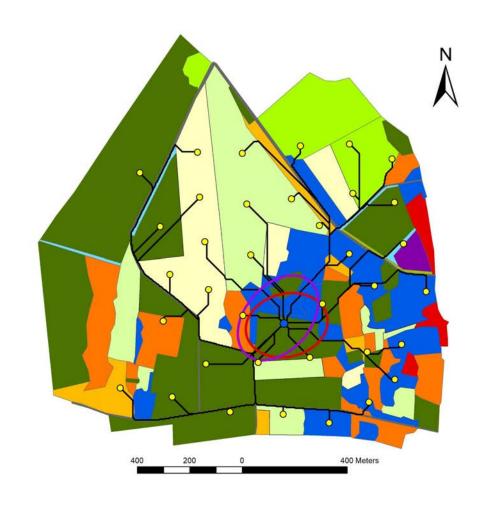

Accuracy = 15m

Grid size effects (36, 25, 16 and 9 traps)

36 Traps N = 3625 Traps N = 204916 Traps N = 933129 Traps N = 230400

Estimated accuracy (m)

Number of Traps in the systematic trapping grid

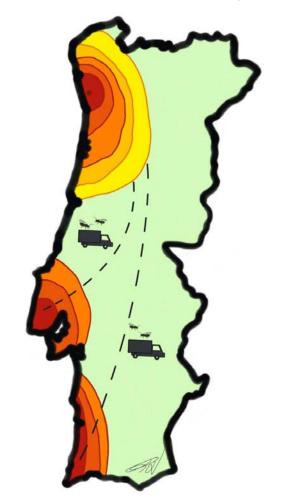

Mean dist LCP Mean dist EUC Expon. (Mean dist LCP)

Conclusions

Landscape composition and configuration affect the dispersal of the beetle and PWN:

- Clear cuts did not greatly disturb its flight path
- Non-habitat areas with broadleaves were avoided

Development of an innovative method to pinpoint the origin of an outbreak in the landscape

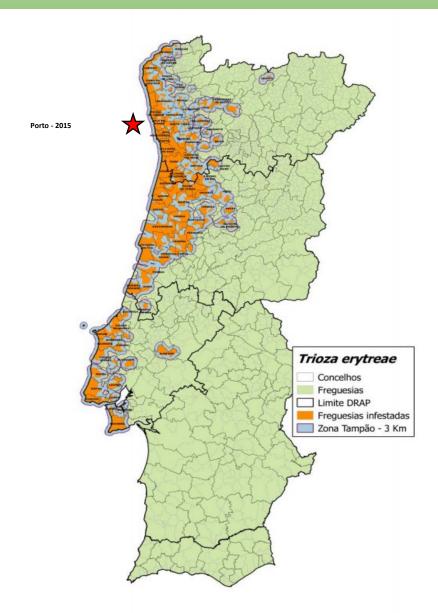


Chapter 3

Modelling the invasion dynamics of the African citrus psyllid: The role of human-mediated dispersal and urban and peri-urban citrus trees

Published in NeoBiota, 84, 369-396

Pedro Nunes (ISA) Manuela Branco (ISA) José Carlos Franco (ISA) Christelle Robinet (INRAE)



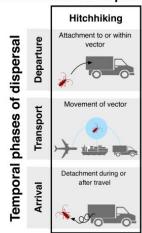
Objectives

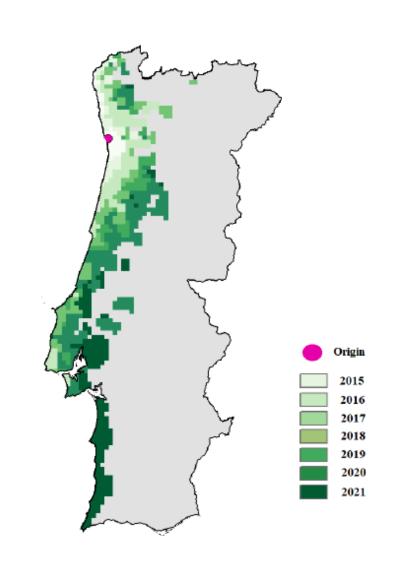
Verify if the hybrid stratified dispersal modelling is suitable for the spread of *T. erytreae*

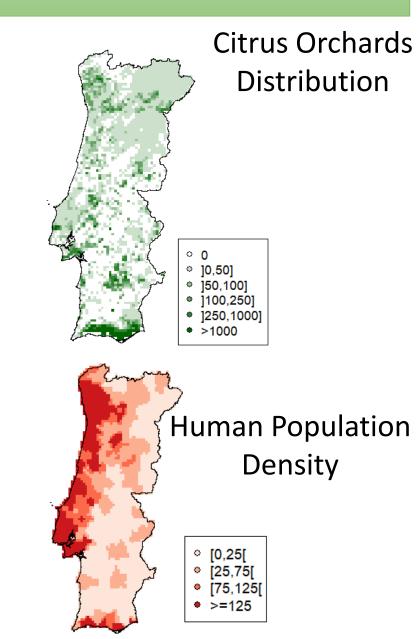
Understand the role of human-mediated spread in the current invasion of the psyllid in Portugal

Highlight the importance of isolated host trees in the current invasion of the psyllid in Portugal

Hybrid Stratified dispersal Model (Robinet et al. 2016)

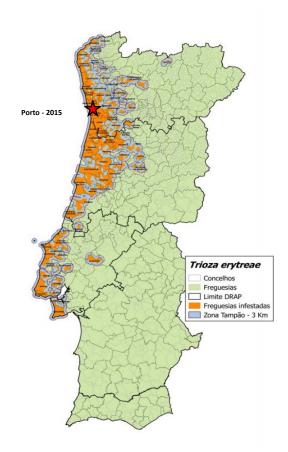

Reaction-diffusion model


$$\frac{\partial N}{\partial t} = D\left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2}\right) + rN\left(1 - \frac{N}{K}\right)$$


 Stochastic long-distance dispersal model

NB = 1 + e; e - Poisson distribution

Human-mediated dispersal


Model Validation using DGAV report data

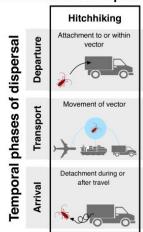
32 model simulations – 300 replicates each

F1-Score =
$$\frac{2 \times (precision \times recall)}{precision + recall} = \left(\frac{TP}{TP + \frac{1}{2}(FP + FN)}\right)$$

Table 3.1 – Parameters and scenarios tested in the modelling.

Model parametersScenarios testedDetailsLong-distance dispersal (LDD)No, Low, Medium, HighNo: No LDD Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2 Medium: \lambda = 5 \ln((P/2642) + 1/\ln(2) / 2 Medium: \lambda = 5 \ln((P/2642) + 1/\ln(2) / 2 Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda$			
dispersal (LDD) Medium, High Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) \times 2$ Fecundity (Fecund) Number of introductions of T . Erytreae (LIS) Host trees available (Urb) Medium, High Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) \times 2$ Low: 327 eggs/female True: Two introductions; in Porto in 2014 and in Lisbon 2017 False: One introduction in Porto	Model parameters		Details
(Fecund)High: 827 eggs/femaleNumber of introductions of T. erytreae (LIS)True and in Lisbon 2017 False: One introduction in PortoHost trees available (Urb)TrueTrue: Trees from orchards, plus trees from urban and peri-urban areas	•	, ,	Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2))$
introductions of <i>T.</i> erytreae (LIS) False False: One introduction in Porto True: Trees from orchards, plus trees from orchards and peri-urban areas	•	Low, High	Low: 327 eggs/female
(LIS) Host trees available True True: Trees from orchards, plus trees from urban and peri-urban areas		True	·
(Urb) urban and peri-urban areas	,	False	False: One introduction in Porto
·		True	· ·
		False	•

Hybrid Stratified dispersal Model (Robinet et al. 2016)


• Reaction-diffusion model

$$\frac{\partial N}{\partial t} = D\left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2}\right) + rN\left(1 - \frac{N}{K}\right)$$

 Stochastic long-distance dispersal model

NB = 1 + e; e - Poisson distribution

Human-mediated dispersal

Biological traits

Spread rate (C) – 6km/year

Growth (r) (Climatic variables)

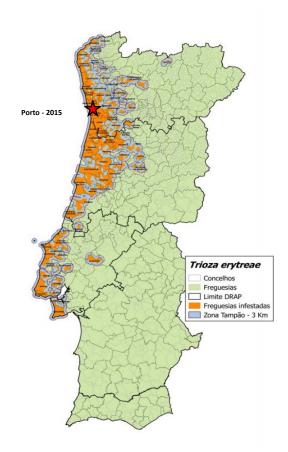
Host distribution (K)
Citrus Orchards - Agricultural Census
Urban Trees - Google street view imagery

Estimating the urban citrus trees

Three urban land-use types:

Vertical urban areas
Horizontal urban areas
Discontinuous urban areas

Urban Areas	Estimated density (trees/ha)	Sampled area (ha)		
Vertical	0.37	360.9		
Horizontal	3.20	293.4		
Discontinuous	5.14	329.1		


Model Validation using DGAV report data

32 model simulations – 300 replicates each

F1-Score =
$$\frac{2 \times (precision \times recall)}{precision + recall} = \left(\frac{TP}{TP + \frac{1}{2}(FP + FN)}\right)$$

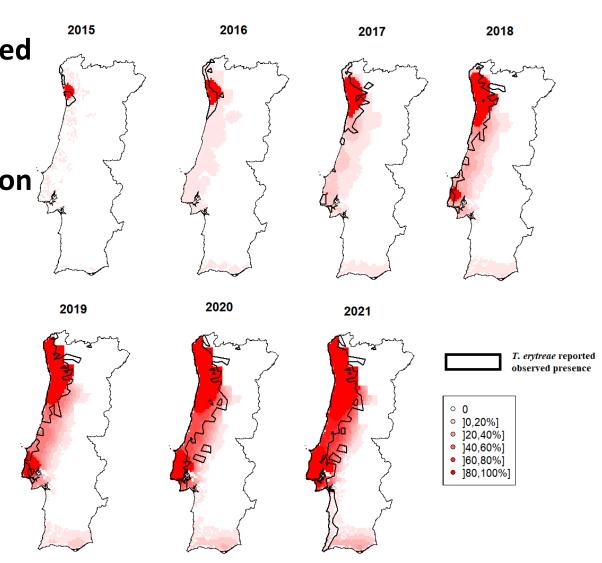
Table 3.1 – Parameters and scenarios tested in the modelling.

Model parametersScenarios testedDetailsLong-distance dispersal (LDD)No, Low, Medium, HighNo: No LDD Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2 Medium: \lambda = 5 \ln((P/2642) + 1/\ln(2) / 2 Medium: \lambda = 5 \ln((P/2642) + 1/\ln(2) / 2 Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda = 1/\ln(2) Medium: \lambda$			
dispersal (LDD) Medium, High Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) \times 2$ Fecundity (Fecund) Number of introductions of T . Erytreae (LIS) Host trees available (Urb) Medium, High Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) \times 2$ Low: 327 eggs/female True: Two introductions; in Porto in 2014 and in Lisbon 2017 False: One introduction in Porto	Model parameters		Details
(Fecund)High: 827 eggs/femaleNumber of introductions of T. erytreae (LIS)True and in Lisbon 2017 False: One introduction in PortoHost trees available (Urb)TrueTrue: Trees from orchards, plus trees from urban and peri-urban areas	•	, ,	Low: $\lambda = 5 \ln((P/2642) + 1/\ln(2)) / 2$ Medium: $\lambda = 5 \ln((P/2642) + 1/\ln(2))$
introductions of <i>T.</i> erytreae (LIS) False False: One introduction in Porto True: Trees from orchards, plus trees from orchards and peri-urban areas	•	Low, High	Low: 327 eggs/female
(LIS) Host trees available True True: Trees from orchards, plus trees from urban and peri-urban areas		True	·
(Urb) urban and peri-urban areas	,	False	False: One introduction in Porto
·		True	· ·
		False	•

The Stratified dispersal model accurately simulated the invasion dynamics of *T. erytreae*

Model performance: F1-Score = 0.803

Human-mediated spread was involved the invasion of *T. erytreae*

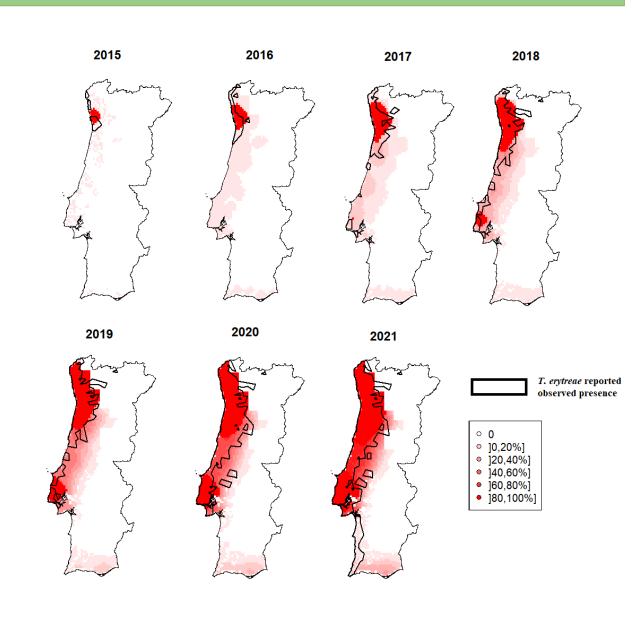

Inclusion of LDD

Model performance: F1-Score = 0.803 vs 0.583

Citrus trees from urban and peri-urban environments played an important role in the spread of *T. erytreae*

Inclusion of 7427 Urban Trees (0.06%)

Model Performance: F1-Score = 0.801 vs 0.686



Conclusions

The stratified dispersal model was a good tool for simulating the invasion dynamics of *T. erytreae:*

- Human-mediated spread was a key-factor in the fast invasion of *T. erytreae* in Portuguese territory
- Citrus trees from urban and peri-urban environments played an important role in the spread of *T. erytreae* in Portugal

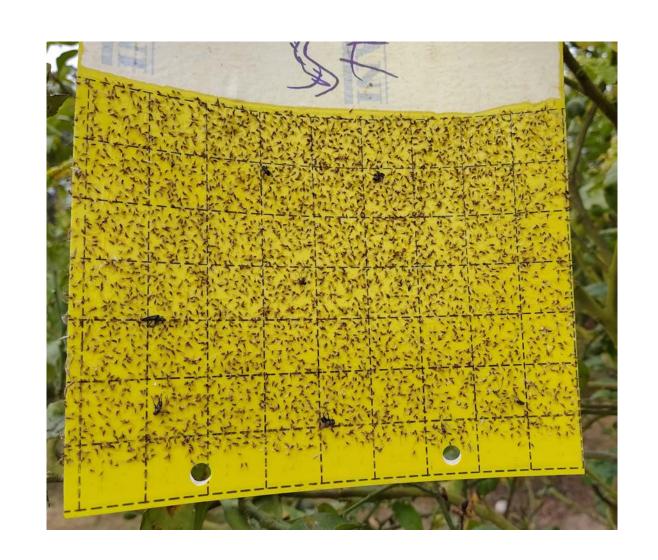
Highlighted the potential of Google street view imagery for surveying urban tree density.

Chapter 4

Patterns of invasibility in agricultural landscapes: are spatio-temporal epidemiology approaches helpful?

To be submitted to Agriculture, Ecosystems & Environment

Pedro Nunes (ISA) Manuela Branco (ISA) José Carlos Franco (ISA) Mário Santos (UTAD)



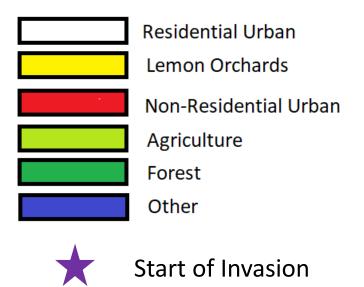
Objectives

Test the suitability of this epidemiological approach to model the dispersal of a pest species in a heterogenous landscape

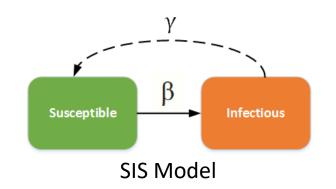
Study the importance of the landscape structure towards the invasion success

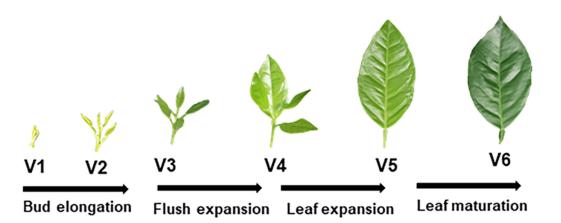
Support relevant management actions to halt or reduce the species spread

Field Data

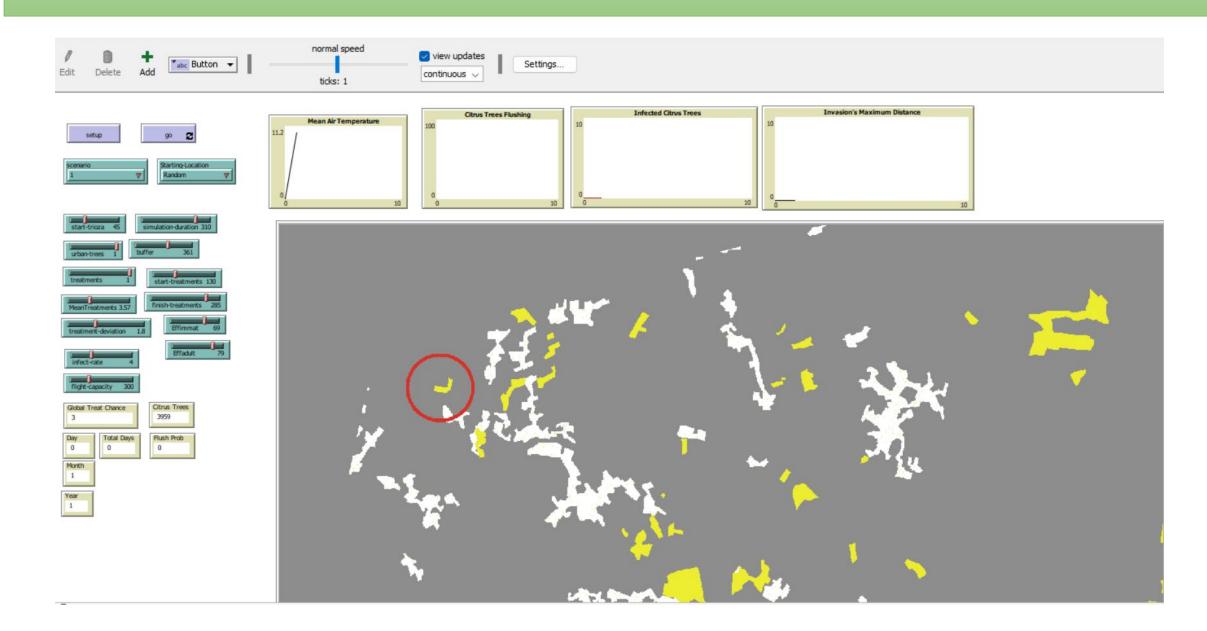

3 Monitoring field trips in May, July and October of 2019

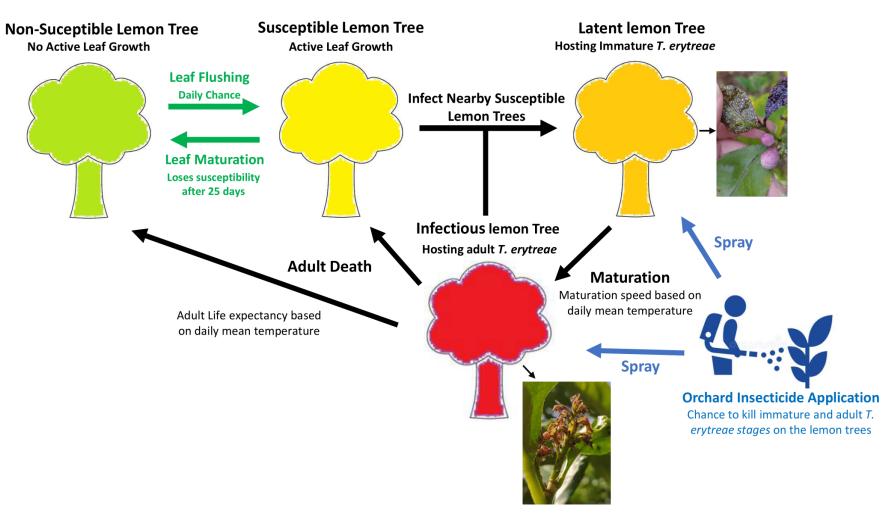
20 lemon trees in 30 lemon tree orchards in the Oeste region


Virtual Landscape

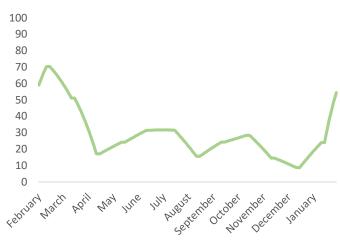

Epidemiological Spatio-temporal Celular based model

Cell size = 5mx5m Time scale = daily

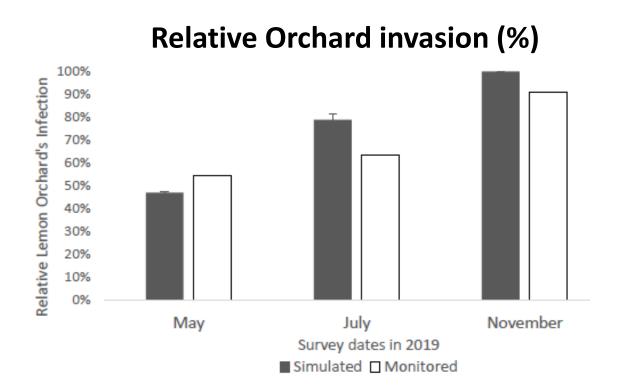


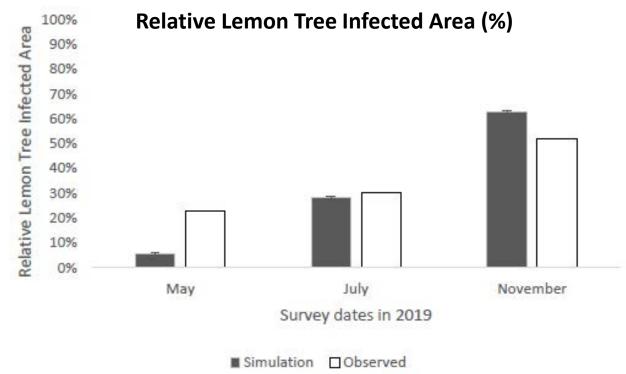


Leaf flushing as a key factor


Mean Temperature

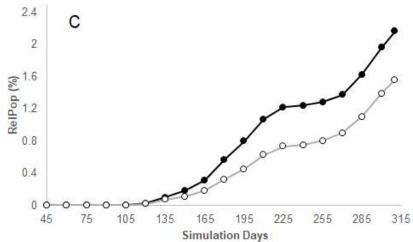
One simulation of *tmed* from the model is presented in the figure below.

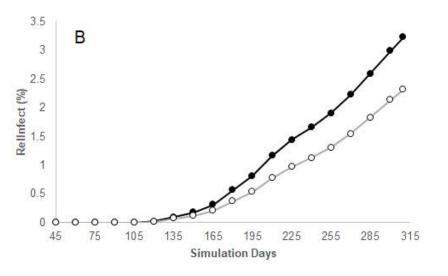

Fig. S4.6.2 *tmed* simulated from the model for one year (360 days) and the estimated seasonal pattern.


Leaf Flushing

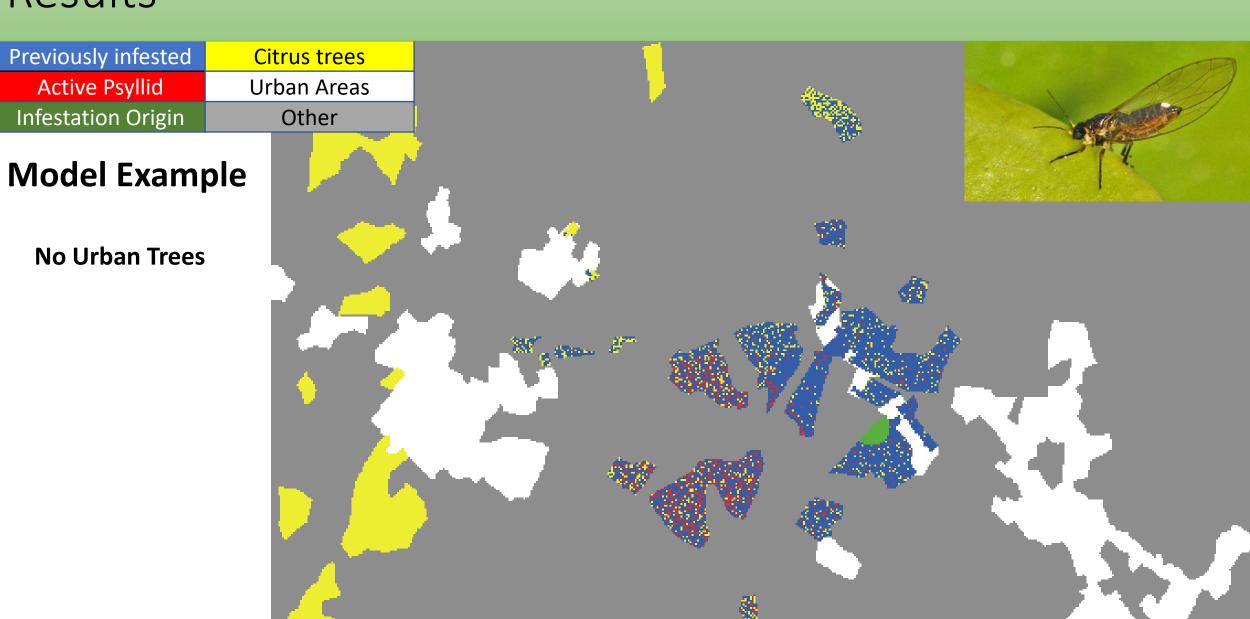
1. Model Performance Evaluation

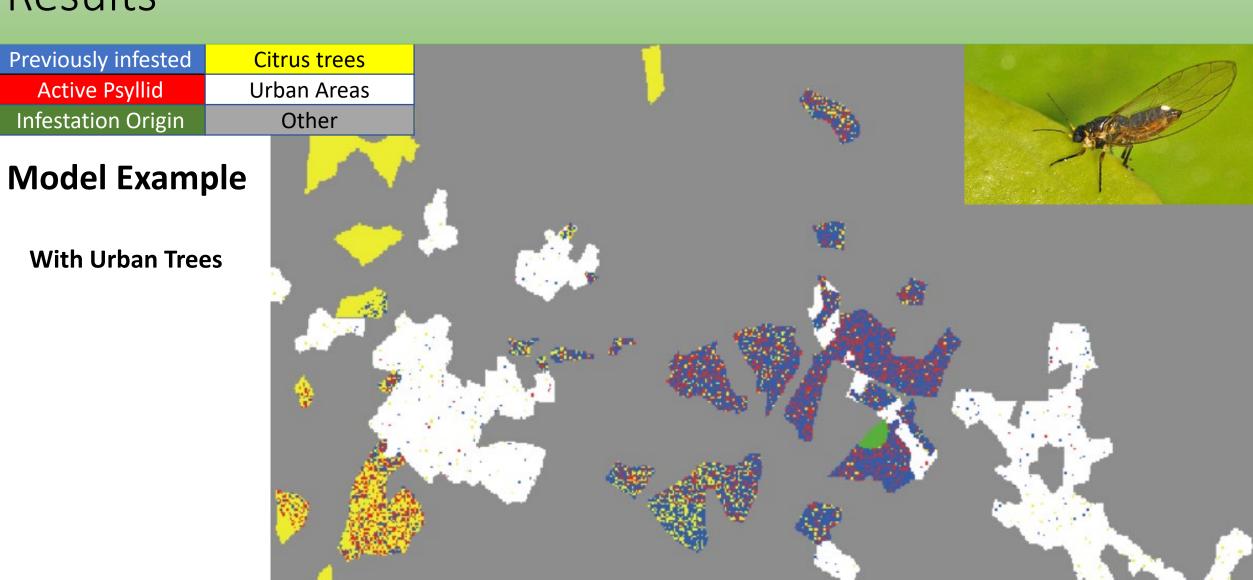
Field work compared with 30 simulations





2. Insecticide application effectiveness

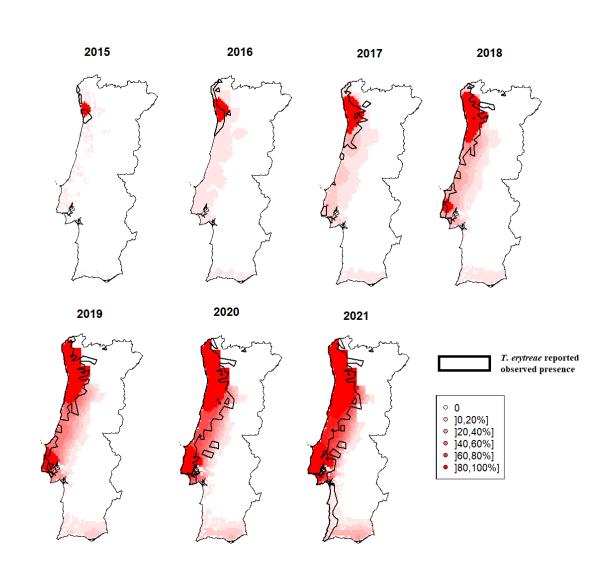

-Scenario 0: No insecticides


--- Scenario 1: With insecticides

3. Landscape's role in the invasion patterns

Multivariate regression model Unstandardized coefficients

Isolated host trees from urban areas promoted the species invasive success	Model Dependent variable:	Maximum Distance	Relative Infected Area	Relative Infected Trees
Isolated trees likely countered the negative effect of orchard fragmentation	Relative urban area	1007.397	0.118	0.082
		p < 0.001	p < 0.001	p < 0.001
	Lemon tree density	129.895	0.186	0.138
Host tree density did not affect the invasive species dispersal ability		p = 0.518	p < 0.001	p < 0.001
	Orchard frag.	46.153	-0.035	-0.009
		P = 0.687	p < 0.001	p < 0.001

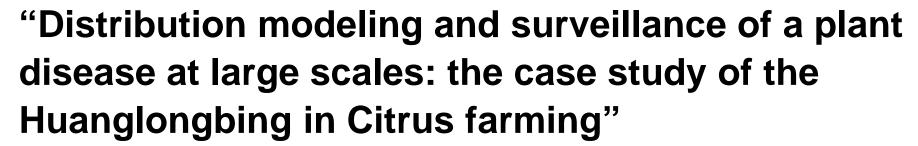


Conclusions

Urban host trees play a significant role in the spread of *T. erytreae* at a local scale.

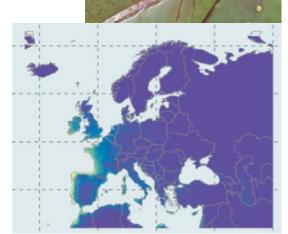
Using only chemical control seems to be not be effective in slowing this type of species spread

Development of a simple and flexible new epidemiological modelling approach for invasion biology



Post-Doc

Beyond Project


Supervision:

Christine Meynard (INRAE – CBGP)

Virginie Ravigne (CIRAD – PHIM)

Nicolas Sauvion (INRAE – PHIM)

Post-Doc

Beyond Project

Expected Outcomes:

Tools:

Risk analysis and mapping

Surveillance

Pest Management

Species distribution models

Species dispersal models

