

- escalating propagule pressure & impacts
- multiple stressors on forest resources
- replicate invasions across regions

- escalating propagule pressure & impacts
- multiple stressors on forest resources
- replicate invasions across regions

Bridgehead effect in Harlequin ladybird *Harmonia axyridis* (Lambaert et al. 2010)

- escalating propagule pressure & impacts
- multiple stressors on forest resources
- replicate invasions across regions

- pressure from stakeholders to find proactive solutions
- growing recognition of ecological services
- evolving regulatory environment

- escalating propagule pressure & impacts
- multiple stressors on forest resources
- replicate invasions across regions

demand for rapid integrated response, risk-based management

- pressure from stakeholders to find proactive solutions
- growing recognition of ecological services
- evolving regulatory environment

→ we adopt existing IPM programs for the same pest in multiple regions

BENEFITS:

- knowledge sharing
- collaboration & training
- more efficient implementation, regulation
- enhanced coordination across jurisdictions
- regional / global solutions & policy

→ we adopt existing IPM programs for the same pest in multiple regions

BENEFITS:

- knowledge sharing
- collaboration & training
- more efficient implementation, regulation
- enhanced coordination across jurisdictions
- regional / global solutions & policy

RISKS:

- no guarantee the same approach works in other regions
- consequences of poor efficacy or program failure
- slower to recognize and adapt to changing pest situations

Regional adaptation of IPM

Conceptual synthesis + online survey of IPM experts (2022)

Regional adaptation of IPM

Conceptual synthesis +

online survey of IPM experts (2022)

- qualitative compilation of examples
- information from grey literature
- unpublished / subjective opinion
- haphazard sample
- global coverage

Anoplophora glabripennis Adelges tsugae Cameraria ohridella Dendroctonus valens Dryocosmus kuriphilus Glicaspis brimblecombei Gonipterus platensis Gonipterus sp. 2 *Ips grandicolis* Ips typographus Leptocybe invasa Leptoglossus occidentalis Matsucoccus josephi Pineus boerneri Pityophthorus juglandis Profenusa thomsoni Rhynchophorus ferrugineus Sirex noctilio Lymantria dispar dispar Tetropium fuscum Thaumastocoris peregrinus Xylosandrus crassiusculus

Regional adaptation of IPM

Conceptual synthesis +

online survey of IPM experts (2022)

Thanks to Prof. Stephen Heard and University of New Brunswick

- Outcome if based on previous program?
- Key differences between regions?
- Research prior to or during implementation?
- Program modified?
- Impact of this modification?

BIOLOGICAL VARIATION

Pest ID

- Different genotypes?
- Species complex?

Natural enemy ID

- Ecotypes?
- Symbiont involved?

BIOLOGICAL VARIATION

Pest ID

- Different genotypes?
- Species complex?

Natural enemy ID

- Ecotypes?
- Symbiont involved?

Tree impacts

- Symptoms and severity?
- Other stressors?
- Other hosts?
- Resistant genotypes?

Ecological context

- Differences in habitats, communities?
- Related species?

Rapid evolutionary change

Jakoby et al. 2019

ENVIRONMENTAL VARIATION

Climatic similarity

- Differences in phenology?
- Changes in voltinism?

Risks under climate change

- Impacts on natural enemies?
- Increasing host stress?
- Shifts in pest distribution?
- Novel outbreaks?

Ips typographus

SCALE AND CAPACITY

Scale of problem

- Economic costs?
- Ecological impacts?
- Timescale and risks?

Capacity

- Resources for implementation?
- Funding for further research?
- Existing expertise?
- Adequate monitoring?

Tactics

- Partial adoption?
- Integration?

Number of eradication programmes per country

REGULATORY CONTEXT

Differences in legislation

- Available tools?
- Specific constraints?
- Timelines of approvals?

Non-target risks

Context & perception?

Adapted by C. MacQuarrie, CFS

CULTURAL CONTEXT

Outreach and uptake

- Communication?
- Implementation routes?
- Cultural values and biases?

Stakeholders

- Public perception?
- Funding models
- Involve social scientists

Scientific publications in 2016

Online survey summary

- biological & environmental variation ranked most important: 22 of 29 cases
- scale & capacity another major challenge: 12 of 29 cases

Online survey summary

- biological & environmental variation ranked most important: 22 of 29 cases
- scale & capacity another major challenge:12 of 29 cases
- modifications already occurring: 20 of 29 cases (14 based on regional differences)
- programs with satisfactory / complete control: 12 of 15 cases involved modifications

(10 report critical/significant impacts ...but only 5 modified before implementation)

... in most cases, multiple factors influence outcomes

- failures are rarely studied / published
- differences / issues may be identified but fixes may not be feasible
- only some components of programs may be implemented
- monitoring & program evaluation often neglected

Fig. 1 Numbers of historical forest insect eradication projects by decade. Data extracted from GERDA database (Kean et al. 2018)

BIOLOGICAL VARIATION

Confirm pest ID

Different genotypes?

Species complex?

Confirm natural enemy ID

Ecotypes?

Symbiont involved?

Assess tree impacts

Symptoms and severity?

Other stressors?

Additional host species?

Check for resistant genotypes

Characterize ecological context

Differences in habitats, biological communities?

Related species?

Management considerations?

Consider rapid evolutionary change

ENVIRONMENTAL VARIATION

Evaluate climatic similarity

Observed changes in phenology or voltinism?

Climate matching modeling?

Assess risks under climate change

Impacts on natural enemies?

Increasing host stress?

Shifts in pest distribution?

Novel outbreaks?

CULTURAL CONTEXT

Consider outreach and uptake

Implementation routes?

Cultural values and biases?

Identify stakeholders

Involve social scientists

SCALE AND CAPACITY

Evaluate scale of problem

Economic costs?

Ecological impacts?

Timescale and risks?

Evaluate capacity

Resources for implementation?

Funding for further research?

Existing expertise?

Adequate monitoring?

Select tactics

Partial adoption? Integration?

REGULATORY CONTEXT

Identify differences in legislation

Available tools?

Specific constraints?

Non-target risks?

BIOLOGICAL VARIATION

Confirm pest ID

Different genotypes?

Species complex?

Confirm natural enemy ID

Ecotypes?

Symbiont involved?

Assess tree impacts

Symptoms and severity?

Other stressors?

Additional host species?

Check for resistant genotypes

Characterize ecological context

Differences in habitats, biological communities?

Related species?

Management considerations?

Consider rapid evolutionary change

ENVIRONMENTAL VARIATION

Evaluate climatic similarity

Observed changes in phenology or voltinism?

Climate matching modeling?

Assess risks under climate change

Impacts on natural enemies?

Increasing host stress?

Shifts in pest distribution?

Novel outbreaks?

CULTURAL CONTEXT

Consider outreach and uptake

Implementation routes?

Cultural values and biases?

Identify stakeholders

Involve social scientists

SCALE AND CAPACITY

Evaluate scale of problem

Economic costs?

Ecological impacts?

Timescale and risks?

Evaluate capacity

Resources for implementation?

Funding for further research?

Existing expertise?

Adequate monitoring?

Select tactics

Partial adoption? Integration?

REGULATORY CONTEXT

Identify differences in legislation

Available tools?

Specific constraints?

Non-target risks?

- simpler ecological context
- relative ease of monitoring
- emphasis on resistance breeding
- trade & food security implications
- cultural dimension

IPM PROGRAM EVALUATION

BIOLOGICAL VARIATION

Confirm pest ID

Different genotypes?

Species complex?

Confirm natural enemy ID

Ecotypes?

Symbiont involved?

Assess tree impacts

Symptoms and severity? Other stressors?

Additional host species?

Check for resistant genotypes

Characterize ecological context

Differences in habitats, biological communities?

Related species?

Management considerations?

Consider rapid evolutionary change

ENVIRONMENTAL VARIATION

Evaluate climatic similarity

Observed changes in phenology or voltinism?

Climate matching modeling?

Assess risks under climate change

Impacts on natural enemies? Increasing host stress?

Shifts in pest distribution?

Novel outbreaks?

CULTURAL CONTEXT

Consider outreach and uptake

Implementation routes?

Cultural values and biases?

Identify stakeholders

Involve social scientists

SCALE AND CAPACITY

Evaluate scale of problem

Economic costs?

Ecological impacts?
Timescale and risks?

Evaluate capacity

Resources for implementation?

Funding for further research?

Existing expertise?

Adequate monitoring?

Select tactics

Partial adoption? Integration?

REGULATORY CONTEXT

Identify differences in legislation

Available tools?

Specific constraints?

Non-target risks?

Repository of research & evaluation outcomes

REGIONAL ADAPTATION OF IPM

- complex life cycle with 2 all-female generations
- passive long-distance dispersal, parthenogenetic
- symptoms: tree decline, death in 3-10 years
- increased cold tolerance during invasion

winter

summer

autumn

spring

the life cycle starts again

- → 30+ years of basic & applied research
- → IPM program in USA relies on:
- 1) chemical control
 - neonicotinoids (every ~2-4 years)
 - prevent hemlock mortality
 - slow spread
- 2) biological control
- 2 Laricobius beetles (Western NA, Japan)
- 2 Leucotaraxus silver flies (Western NA)
- 3) silviculture (tests ongoing)
- stand thinning to promote tree resilience

BIOLOGICAL VARIATION

Pest ID

- Different genotypes?
- Species complex?

Natural enemy ID

- Ecotypes?
- Symbiont involved?

Tree impacts

- Symptoms and severity?
- Other stressors?
- Other hosts?
- Resistant genotypes?

Ecological context

- Differences in habitats, communities?
- Related species?

Rapid evolutionary change

HWA invaded range in Nova Scotia

ENVIRONMENTAL VARIATION

Climatic similarity

- Differences in phenology?
- Changes in voltinism?

Risks under climate change

- Impacts on natural enemies?
- Increasing host stress?

- climatic matching of predators
- abiotic mortality → population dynamics

SCALE AND CAPACITY

Scale of problem

- Economic costs?
- Ecological impacts?
- Timescale and risks?

Capacity

- Resources for implementation?
- Funding for further research?
- Existing expertise?
- Adequate monitoring?

Tactics

- Partial adoption?
- Integration?

HWA biocontrol predator rearing facility (Mark Whitmore, Cornell University)

Forest Ecol

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

A decision framework for hemlock woolly adelgid management: Review of the most suitable strategies and tactics for eastern Canada

Caroline E. Emilson^{a,*}, Michael Stastny^b

^a Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada b Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, 1350 Regent Street South, Fredericton, NB E3B 5P7, Canada

REGULATORY CONTEXT

Differences in legislation

- Available tools?
- Specific constraints?
- Timelines of approvals?

Non-target risks

Context & perception?

- some insecticide applications not allowed/available
- consultations with First Nations, conservation groups
- sources of biocontrol agents
 - → same species but requires petition if from USA

CULTURAL CONTEXT

Outreach and uptake

- Communication?
- Implementation routes?
- Cultural values and biases?

Stakeholders

- Public perception?
- Funding models
- Involve social scientists

Hemlocks & Hardwoods Trail, Kejimkujik NP (R Rodriguez Jr)

- aesthetic & recreational value, urban forests
- private versus public forests
- national versus regional strategy

ENVIRONMENTAL VARIATION

Risks under climate change

- Shifts in pest distributions?
- Changing population dynamics?
- Novel outbreaks and impacts?

Emerging issues in *native* forest insect pests in the Anthropocene

UNCLASSIFIED - NON CLASSIFIÉ

Spruce budworm / SBW (Choristoneura fumiferana)

- most important native insect pest in forests of eastern Canada
- endemic to epidemic (~10+ years in duration) every ~35 years
- current outbreak in QC has affected >13 million hectares since 2008

Are outbreaks shifting north?

- evidence for increased population growth in previously marginal regions
- current outbreak has reached new locations

50° N 40° N Population growth rate b) 2000-201 index 50° N 40° N

a) 1965-1976

Pureswaran et al. 2015

What are the consequences of phenological asynchrony between insect and host trees?

- some evidence that earlier budburst improves larval performance
- but, greater impact on insect emergence than on host budburst?
- black spruce becoming a better host (e.g. Pureswaran et al. 2019)

Is the southern range edge less likely to outbreak?

- warmer and more variable fall / winter may be impacting larval overwintering
 - → metabolic reserves during diapause
- possible clues from historical outbreaks in Nova Scotia?

Taylor et al. 2020

Are magnitude, duration, and frequency of outbreaks changing?

- difficult to attribute to climate change...
 - → forests, management are also different...
- large-scale dynamics, dispersal
- new management approach in some areas of eastern Canada

defoliation / needle fall

soil carbon & nutrients

runoff / hydrology

water chemistry & nutrients

stream biofilms & microbes

fish community & diet

critical forest habitat

BIOLOGICAL VARIATION

Confirm pest ID

Different genotypes?

Species complex?

Confirm natural enemy ID

Ecotypes?

Symbiont involved?

Assess tree impacts

Symptoms and severity?

Other stressors?

Additional host species?

Check for resistant genotypes

Characterize ecological context

Differences in habitats, biological communities?

Related species?

Management considerations?

Consider rapid evolutionary change

ENVIRONMENTAL VARIATION

Evaluate climatic similarity

Observed changes in phenology or voltinism?

Climate matching modeling?

Assess risks under climate change

Impacts on natural enemies?

Increasing host stress?

Shifts in pest distribution?

Novel outbreaks?

CULTURAL CONTEXT

Consider outreach and uptake

Implementation routes?

Cultural values and biases?

Identify stakeholders

Involve social scientists

SCALE AND CAPACITY

Evaluate scale of problem

Economic costs?

Ecological impacts?

Timescale and risks?

Evaluate capacity

Resources for implementation?

Funding for further research?

Existing expertise?

Adequate monitoring?

Select tactics

Partial adoption? Integration?

REGULATORY CONTEXT

Identify differences in legislation

Available tools?

Specific constraints?

Non-target risks?