West African Observatory of Small Mammals Indicators of Environmental Change (ObsMiCE).

Madougou GARBA

Head in charge of Insects and Vertebrate Pest Studies

PLANT PROTECTION GENERAL DIRECTION

MINISTERY OF AGRICULTURE NIAMEY NIGER

+ 227 96 87 02 25

garba_madougou@yahoo.fr

Niamey Niger 29 november to 1srt décember 2022

Introduction

The genus Rattus is native to Southeast Asia, and the species Rattus rattus (Linnaeus, 1758) differentiated in the Indian peninsula

However, in the case of the dispersion of commensal animals throughout the world, neither the roads, nor the rivers, nor even the seas or the oceans seem to play this role of physical barrier since their crossing is carried out thanks to the man and his technology.

On the contrary, the roads and navigation axes very often constitute privileged dispersal routes.

Thus, it seems to have been imported to the Senegalese coast by the boats of Portuguese explorers in the 15th century, then to have penetrated inland during the first half of the 17th century thanks to trade along the Senegal River.

Between 1991-2000, information concerning the black rat was collected. Between 2001-2012 the unambiguous presence was confirmed in Niger

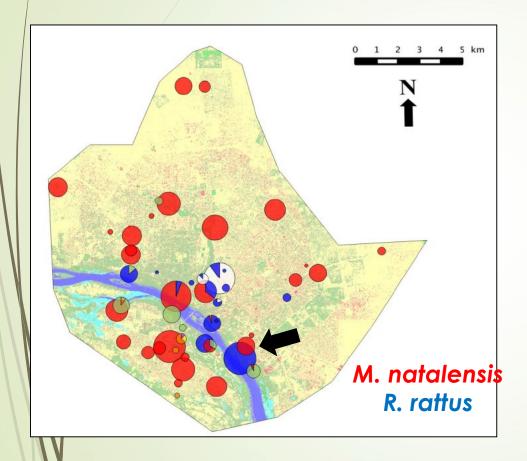
Our hypothesis is based on a process of replacement of native rodents by invasive rodents following their arrival.

This is the case of European cities where native species have been replaced by invasive ones.

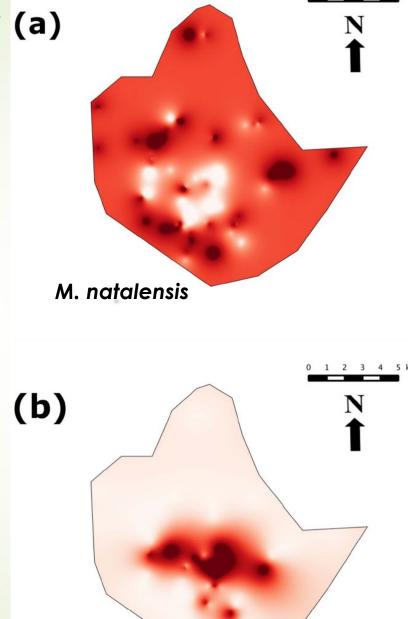
if we consider on the one hand that cities constitute atypical and complex ecological environments (Pickett et al., 2001), and on the other hand that invasive organisms are often generalists, very adaptable and excellent competitors

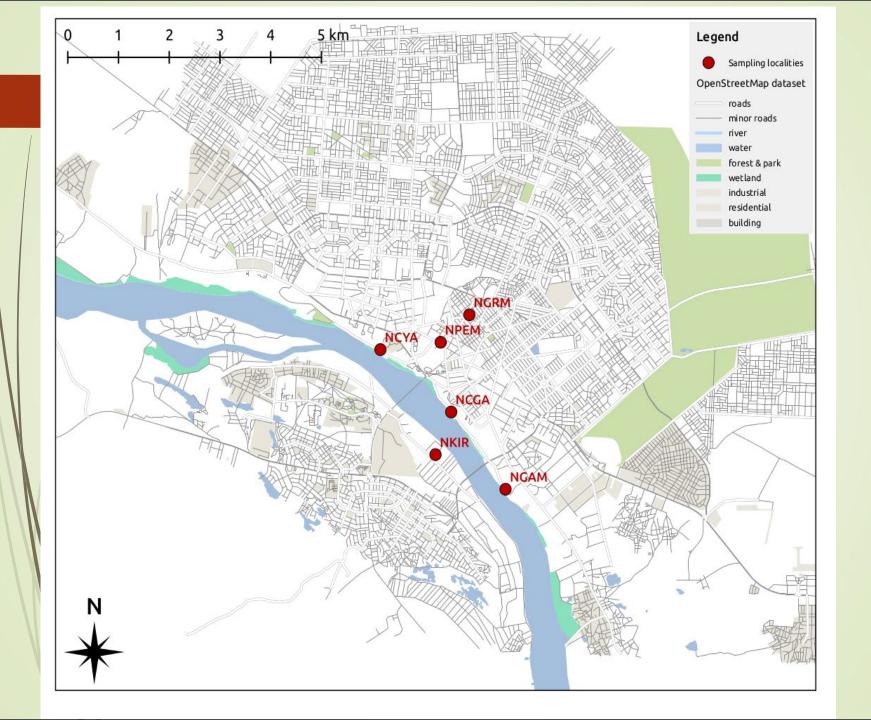
Enemy release », du « Spill over » et du « Spill back »

Monitoring of a contact zone between invasive and native rodents in an urban environment:


Mastomys natalensis and Rattus rattus at Gamkalley-Niamey"

Madougou GARBA, Abdourahamane ABARA KANE & Gauthier DOBIGNY




Spatial exclusion between M.
natalensis and R. rattus within the city (a)
of Niamey

Garba et al., 2014

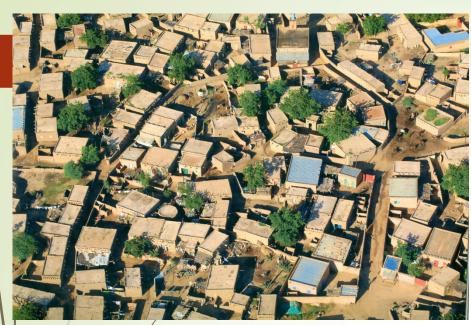
R. rattus

the Gamkalley district Niamey, Niger

Niamey was created by colonizings at the end of the 19th century..

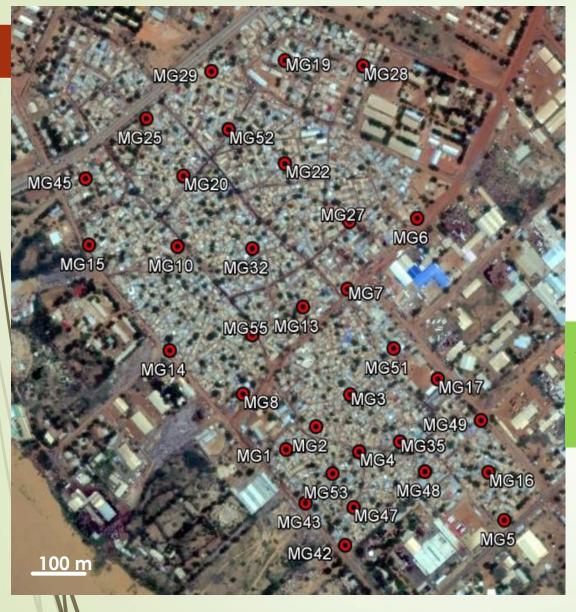
Camkalley is one of the oldest villages which will be absorbed by the growth of the city.

Today, it is a densely populated, very disadvantaged district, not subdivided, essentially in banco.


In **2010**, we captured only Mastomys there, while the adjacent industrial area (ex. Slaughterhouses) housed only black rats.

→ Monitoring of a native vs invasive contact zone at the neighborhood level from 2014-2018

Gamkalley district



METHODOLOGY

October 2014

February 2015 Jun 2015 October 2015

February 2016 July 2016 February 2018

58 sites considered 33 sites effectively monitored

Mesh trap and Sherman 3-4 night-traps

Spleens, kidneys, digestive tracts

RESULTS

2856 Trap Nights for 7 sessions

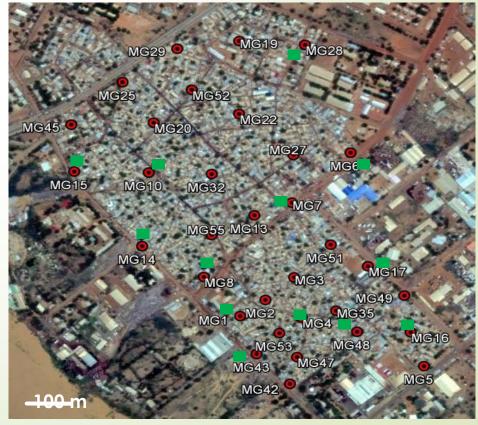
194 rodents and 6 shrews 154 M. natalensis and 40 R. rattus

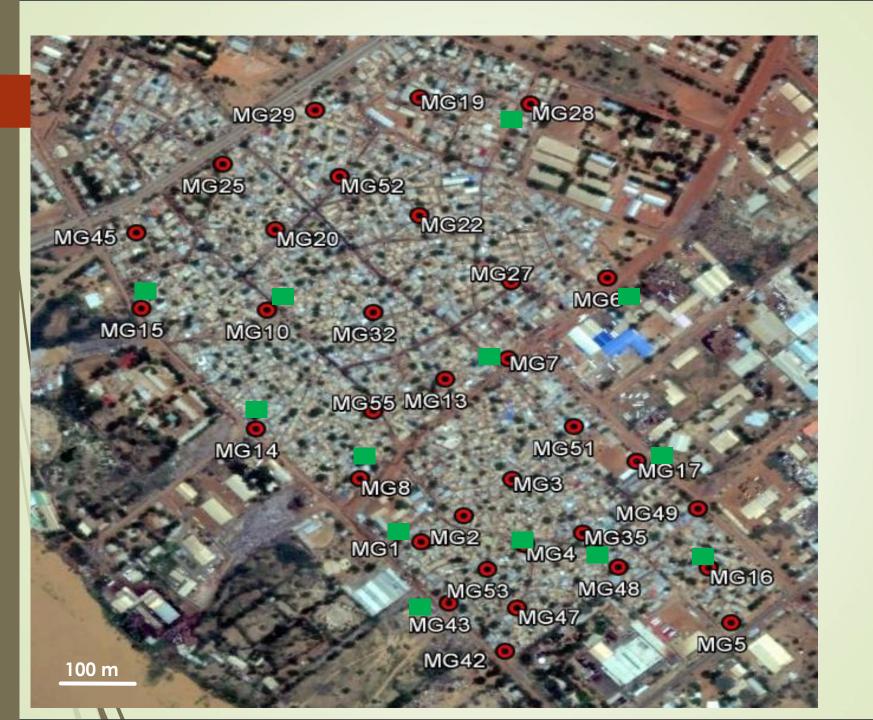
Mastomys and Rattus mix, sometimes in the same dwellings.

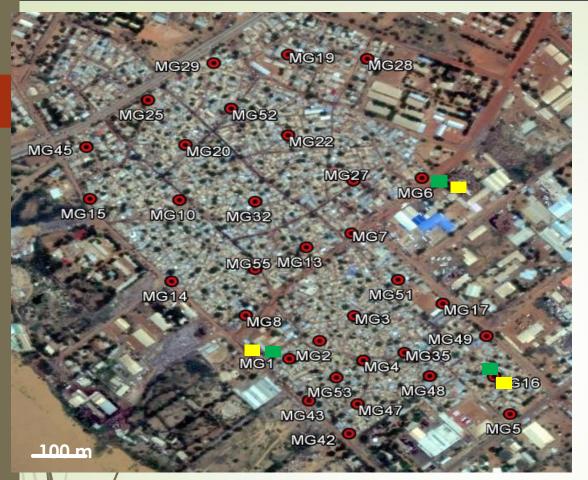
Possible coexistence up to 17 months.

A single site with only Rattus.

few Rattus sites, and almost never the same ones


Many sites with only Mastomys


	site	lat	long	oct-14	févr-15	juin-15	oct-15	mars-16	juil-16	fevr-2018
	1401	10 40000	0.10714	2D : 114			144.10	10.114	1 \ 4	0.0.54
	MG1	13,49009	2,12714	3R+1M	na	014	1M+1C	1R+1M	1M	2 R+ 5M
	MG2	13,49053	2,12775		1M	2M	2M		1M	
	MG3	13,49114	2,12844	21.4		244	1.0	144.10	1 \ \	ENA
	MG4	13,49005	2,12863	3M		2M	1R	1M+1C	1M	5M
	MG5 MG6	13,48874	2,13159 2,12979		n 0		n 0	1M 1M	1R+1M+1C	
	MG7	13,49449 13,49315	2,12979	1R	na	obs(R)	na 3M	1771	IKTIMITIC	2M
	MG8	13,49115	2,12626	2R		ODS(K)	3//1		1M	ZIVI
	MG10	13,47113	2,12626	ZIV	1R				1771	
	MG13	13,49281	2,12473		TIX					
	MG14	13,47201	2,12/40				1R			
	MG15	13,49399	2,12313		1R		2M		2M	
	MG16	13,48966	2,13126	1R+2M	1M		2111	1M	2111	1 R + 3M
	MG17	13,49144	2,13022	110 - 2141	1R			1R	2M	1 10 - 0141
	MG19	13,49748	2,12711						2.77	
1	MG20	13,4953	2,12505				na	na	na	
	MG20bis	13.49545	2.12525	na	na	na		2M		
NI.	MG22	13,49553	2,12711							
	MG25	13,49639	2,1243	1M	1M		2M	1M		
\ \	MG27	13,49443	2,12842	2M			1M			
	MG28	13,49731	2,12852	2R		10R	4R		2R	1 R
	MG29	13,49728	2,12562							
	MG32	13,49392	2,12645							
	MG35	13,49024	2,12946	1M				1R+1M		
	MG42	13,48825	2,12835	1M+1C					6M	
	MG43	13,48906	2,12754	1C					1R	
	MG45	13,49525	2,12306	6M	6M	3M	1C			
	MG47	13,48898	2,12852					9M	2M	4M
	MG48	13,48967	2,12997					4M	2M	
	MG49	13,49065	2,1311					2M	10M	
	MG51	13,49202	2,12932	2M		1M	1M			
	MG52	13,49618	2,12597	6M	4M	3M	1M	5M	4M	
	MG53	13,48963	2,12992							
	MG55	13,49228	2,12645	2M	2M		2M	3M	2M	



In 2010 the rat was present only at the slaughterhouse

Between 2014 and 2018 the rat invaded the whole neighborhood. The green dots symbolize the concessions where it was captured at least once during the 7 sessions, i.e. 13 concessions out of the 33 monitored.

MG 6 2016: 2 R +5 M+ C

MG 16 2014: 1 R +2 M

MG 16 2016: 1 R +3 M

MG 1 2014: 1 R +3 M

MG 1 2016: 1 R +1 M

MG 1 2018: 2 Rattus +5 M

CONCLUSION

No replacement of M. natalensis by R. rattus observed at this space and time scale.

Mastomys natalensis / Rattus rattus interactions to be studied on a scale finer spatial and/or longer temporal scale?

Suggestion for the future:

Tracking Gamkalleye rodents with a time step larger (e.g. one per year?)
but by integrating more sites (twice?)

Examples of questions that can be addressed:

- * Test of the hypothesis of the replacement of M. natalensis by R. rattus in an urban Sahelian environment
- *Samples epidemiological studies (transfer of pathogens/parasites, role of parasites in the invasion of an Matalensis area by the black rat, etc.)
- * Samples ecological studies (e.g. evolution of the fine spatial organization of urban populations of M. natalensis via population genetics).

Thank you

