Which samples for which uses?

1- A short reminder:

Sampling procedures when dissecting

Cleaning of pathogens and nucleic acids

✓ Mechanic washing = water (best way to remove fluids, especially blood)

✓ Pathogens killed by heat, ethanol, javel, licensed desinfectants (e.g., phagospray, anios, etc)

= desinfection

✓ Nucleic acids are not living organisms! RNA fragile, DNA robust (even at RT) Destroyed by specific (and expensive) solutions ... or Sodium Hypochloride 10% (at least 10 minutes!) – WHO = decontamination

First pair to open the body

Second pair to sample viscers

Dissection 2

Very clean

Javel

(to wait)

Valuable for rapid series (no need to wait in a decontaminating solution)

in the decontaminating solution

If a decontaminating solution is used, several pairs of tools are needed for them to stay in it sufficiently long!

✓ Dry / non-ethanol instruments into specific solutions (e.g., RNA-preserving buffers)

√ When sampling digestive tracks, ears, etc ... better do it at the end
(i.e., after other inner viscers)

✓ NGS experiments are very sensible: in case of organ-specific experiments, use cleaned organ-specific instruments

2- What to sample:

which organs for which purpose?

Study of mammal reservoirs

- ✓ Taxonomy (e.g., morphology, molecular systematics, voucher specimens)
- ✓ Phylogeography
- ✓ Population genetics
- ✓ Immunology
- ✓ Gene-specific investigation (e.g., resistance to rodenticides, immunogenetics)
- ✓ Functional genomics (i.e., RNA-based transcriptomics)
- ✓ Diet
- ✓ Microbiote analyses

Screening / characterization of mammal-borne pathogens

- ✓ Presence/absence (or signatures of previous presence)
- ✓ Direct genotyping (i.e., identification of strain s. l.)
- ✓ Population genetics (e.g., Trypanosoma lewisi)
- ✓ Gene-specific investigation (e.g., resistance to antibiotics)
- ✓ Microbial culture and phenotyping (e.g., antibioresistance, MAT)

Study of (ecto)parasites

- ✓ Taxonomy
- ✓ Phylogeography
- ✓ Population genetics
- ✓ Gene-specific investigation (e.g., resistance to insecticides)
- ✓ Breeding (e.g., fleas)

Ethanol 96°

DNA-based study of:

Leptospira

Rickettsia

Yersinia
Trypanosoma, Leishmania
Pathobiome (meta16S)

Toxoplasma

Gastro-intestinal helminths
Gastro-enteritic bacteria (ABMR)
Gut microbiote

Ectoparasites genetics

Rodents genetics

RNA Later RNA Shield

RNA-based study of:

Lassa

Functional genetics

Serological studies

Specific media Liquid nitrogen

Living organisms culture

+ screening / analyses spécifiques

Rein car lepto ... et génét rongeurs si on fait méta16S sur la rate !!!!

Simple but critical reminders on sampling procedures for future processing in the lab

- ✓ A bit of sample... with a lot of buffer (say, 1:4)
- ✓ Clean the organ, avoid « extra » material (e.g., conjonctive tissues, fat)
- ✓ Incise the organ (without smashing it!) for a better impregnation
- ✓ Make sure the sample is fully submerged in the liquid.
- ✓ When lots of blood, it may be useful to change the buffer after 24 hours to avoir excessive dilution

3- Transport and (long-term) preservation:

a few (frequent) examples of constraints

Liquid nitrogen

Availability Cost Transport Risk

RNA preserving buffers

RT then freezing (Cost)
Viral inactivation?

Ethanol

Flammable Transport Quality? (≠pharma)

Formol

Highly toxic Transport No MB possible

Ethanol-preserved samples

Use good tubes (i.e., joint-sealed tubes)
Keep ethanol-preserved samples at 4°C
(but check ethanol levels anyway!)

Emma?

5 days RT or heat

Long distance transportation of biological samples is getting more and more complicated (and expensive)!

Anticipate (time, money, procedures)

Ethics
Research authorization
Nagoya
Import/export