The age of **MUSEOMICS**

How to get genomic information from museum specimens of Lepidoptera

Elsa CALL

UNIVERSITY

CBGP 19th April 2022

• Natural history museum collections are abundant

METHOD

• Over 2.5 – 3 billion specimens

۵M

CONCLUSION

WGS

• Natural history museum collections are abundant

ETHOD

- Over 2.5 3 billion specimens
- Value of museum collections
 - Systematics
 - Evolution

CONTEXT

- Biodiversity
 - Habitat loss & Climate change
 - Biological invasion
- Public health and safety
 History of infectious diseases

Suarez & Tsutsui, 2004; Chapman, 2005

IIICS

• DNA from these specimens

Too degraded to be used

Next-Generation Sequencing

- Short fragments
- Works for extinct taxa
 - Neanderthals, mammoths & cave bears

METHOD

CONTEXT

CONCLUSION

Pääbo et al. 2004; Noonan et al. 2005; Palkopoulou et al. 2015

WHY IS GENOME SEQUENCING DIFFICULT?

METHOD

TE

CONCLUSION

WGS

Pääbo et al. 2004; Noonan et al. 2005; Palkopoulou et al. 2015

AIM

Hofreiter et al. 2001; Fulton, 2012

Types of ancient DNA damage

Strand breaks

Natural fragmentation of the DNA

ETHOD

• Effects

CONTEXT

- Low quantity of DNA
- Short fragment length
- Solutions
 - Amplify short (<100 300 bp)
 - Overlapping fragments

וווככ

• Miscoding

CONTEXT

- Chemical degradation of DNA
- Effects: base misincoporation
 - *Type 2*: $\mathbf{C} \rightarrow \mathbf{T}(\mathbf{U})$ and $\mathbf{G} \rightarrow \mathbf{A}$
 - *Type 1:* A → G

Solutions

Multiplex extractions and amplifications

ETHOD

• Remove Uracil

1165

Hofreiter et al. 2001; Fulton, 2012

Types of ancient DNA damage

Blocking

- Chemical modification of DNA
- Effects

CONTEXT

- Blocks amplification
- Base misincorporation G → T

Solutions

- Special polymerase
- Multiple amplifications

undamaged DNA

G ::: base pairs with C

8-oxo-G ::: base pairs with A

CONCLUSION

METHOD

METHOD

Crosslinks

CONTEXT

- Linkage between 2 nucleotides
- Within the same strand

CONCLUSION

METHOD

Crosslinks

CONTEXT

- Linkage between 2 nucleotides
- Within the same strand
- Or between opposite strands

CONCLUSION

METHOD

Crosslinks

- Linkage between 2 nucleotides
- Within the same strand
- Or between opposite strands
- Effects

CONTEXT

- No amplification
- Solutions • Cleave crosslinks

CONCLUSION

WGS

5' end

AIM

METHOD

TE

WGS

CONCLUSION

MUSEOMICS EXAMPLES

Quagga, extinct in 1883

• Dry muscles from a museum specimen

ETHOD

- Sanger sequencing
- Sequence of mtDNA
 - 229 nucleotide pairs
 - 12 base substitutions

Date of the genus Equus 3-4 Myr ago

IIICS

Higuchi et al., 1984

• Flightless NZ bird that went extinct following human settlement in 13th century

FTHOD

Used NGS to recover

Complete MT genome

• ~900 Mb of Nuclear genome (~75% of Emu genome)

• Identify microsats that can be used to study past population of moa

Cloutier et al., 2018

• Origin & domestication of watermelon is unclear

ETHOD

- Archeological evidence restricted to Egypt & Libya
- 7 edible species (sweet red) & 6 inedible species (white pulp)
- A Citrullus leaf founded in a tomb

וווככ

Genome skimming on the leaf plus all *Citrullus* species
Phylogenetic analysis + markers of bitterness vs. sweetness

ETHOD

⇒ Confirmation the leaf is sister to domesticated watermelon

וווככ

• Highlights that 3,500 years ago Egyptians had cultivated a sweet, red watermelon

Renner et al., 2020, pre-print

• Sequencing of historical samples

- Beetles 58-159 years old
- Non-destructive method
 - Low amount of input DNA
- Repaired and un-repaired protocols
- Compare preparation libraries protocols

• Recover 85% of the mtGenome

- 67 nuclear protein coding genes
 - Average 0.5-65% recovery

Compared historical specimens with modern samples

- List of guidelines
 - Cost-effective sample preparation

Facilitate new museomics projects

Sproul & Maddison, 2017

AIM

HOW TO GET GENOMIC INFORMATION FORM MUSEUM SPECIMENS

METHOD

TE

WGS

CONCLUSION

• Develop NGS based methods for museum specimens of Lepidoptera

METHOD

WGS

• Target Enrichment (TE)

AM

• Whole-genome sequencing (WGS)

COnclusion

 Develop NGS based methods for museum specimens of Lepidoptera

• Target Enrichment (TE)

AIM

- Whole-genome sequencing (WGS)
- Explore museomics applications
 - Phylogenetic relationships among families of moths
 - Population genetics?

 Develop NGS based methods for museum specimens of Lepidoptera

• Target Enrichment (TE)

- Whole-genome sequencing (WGS)
- Explore museomics applications
 - Phylogenetic relationships among families of moths
 - Population genetics?

Investigate the level of DNA preservation in specimens of various ages

• Epicopeiidae, Sematuridae & Pseudobistonidae

ETHOD

- Collections in museums (Copenhagen, Bonn, Tokyo, etc.)
- Small families
 - 27 Epicopeidae Asia

AM

- 42 Sematuridae South America
- 2 Pseudobistonidae Asia

IIIGS

Pieris napi (Pieridae)
 Common in Sweden
 ⇒ important collections

AM

METHOD

• Reference genome

WGS

Hill et al. 2019

AIM

METHOD

TE

WGS

CONCLUSION

HOW DOES SAMPLE PREPARATION WORK?

Modified from protocol by Meyer & Kircher, 2010

Modified from protocol by Meyer & Kircher, 2010

Modified from protocol by Meyer & Kircher, 2010

())))

alar

AIM METHOD

WHOLE GENOME SEQUENCING (WGS)

CONCLUSION

WGS

TE

METHOD

D

TE

WGS

CONCLUSION

WHOLE GENOME SEQUENCING (WGS)

AIM

3 4 0000 3 4 0000 3 4 000 3 5 4 000 3 4 0000 3 4 0000 3 4 0000 3 4 0000 3 4 0000 3 4 0000 3 4 0000 3

<u>(XXX)</u>

TARGET ENRICHMENT (TE)

XXXXXX

AIM

METHOD

TE

WGS

CONCLUSION

METHOD

TE

CONCLUSION

TARGET ENRICHMENT (TE)

AIM

METHOD

I

TE

WGS

CONCLUSION

TARGET ENRICHMENT (TE)

AIM

Based on Espeland et al., 2018

METHOD

TE

WGS

CONCLUSION

TARGET ENRICHMENT (TE)

AIM

Based on Espeland et al., 2018

TE

METHOD

AM

CONTEXT

CONCLUSION

TARGET ENRICHMENT RESULTS & DISCUSSION

METHOD

AIM

112

CONCLUSION

• Present a TE kit for Lepidoptera

• 2,953 loci in 1,753 orthologous genes

METHOD

Systematic

DOI: 10.1111/syen.12481

12

- Recovered between
 - 78 1,747 loci
- Oldest specimen

Systematic Entomology (2021), 46, 649-671

• From 1892: 517 loci

Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens

CHRISTOPH MAYER¹⁽⁰⁾, LARS DIETZ²⁽⁰⁾, ELSA CALL³⁽⁰⁾, SANDRA KUKOWKA⁴, SEBASTIAN MARTIN⁵⁽⁰⁾ and MARIANNE ESPELAND²⁽⁰⁾

וווככ

CONCLUSION

METHOD

TE

CONCLUSION

0.04

Aedia leucomelas - 1986

AIM

Insect Systematics and Diversity, (2021) 5(2): 6; 1–10 doi: 10.1093/isd/ixaa021 Molecular Phylogenetics, Phylogenomics, and Phylogeography Research

Museomics: Phylogenomics of the Moth Family Epicopeiidae (Lepidoptera) Using Target Enrichment

Elsa Call,^{15,9} Christoph Mayer,^{2,9} Victoria Twort,^{1,3,9} Lars Dietz,^{2,9} Niklas Wahlberg,^{1,9} and Marianne Espeland^{4,9}

Same kit, family level

- Use TE probes set
- Phylogenomics 378 loci; 327 genes

Same kit, family level

- Use TE probes set
- Phylogenomics 378 loci; 327 genes

ETHOD

i I

- Average length 367 bp
- Total length: 134,881 bp
 Old samples have fewer loci
 - Oldest specimen yielded 516 raw loci

Museomics: Phylogenomics of the Moth Family Epicopeiidae (Lepidoptera) Using Target Enrichment

1165

Elsa Call,^{15,9} Christoph Mayer,^{2,9} Victoria Twort,^{13,9} Lars Dietz,^{2,9} Niklas Wahlberg,^{1,9} and Marianne Espeland^{4,9}

Number of raw loci recovered per year of collection

Year of collection

CONCLUSION

METHOD

TE

S

WGS

CONCLUSION

Semturidae sister to Pseudobistonidae+Epicopeiidae

۵M

WHOLE-GENOME SEQUENCING (WGS) RESULTS & DISCUSSION

METHOD

TE

AM

WGS

CONCLUSION

• *De novo* assembly 205 Mbp

۵M

• 308 genes recovered from the 327 (Call *et al.*, 2021)

METHOD

ΠE

CONCLUSION

• *De novo* assembly 205 Mbp

• 308 genes recovered from the 327 § (Call *et al.*, 2021)

FTHOD

- WGS length longer
 - On average 786 bp
- TE get targeted genes
- Bias for TE
 - Investigate the 1,753 genes & 2,953 loci
 - Other genes sets

UJGS

Sequencing method

Population genetics(?)

- 81.40% of sequences are from *Pieris napi*
- 100% mitochondrial genome

• Coverage of 1,963X

- Oldest specimens have fewer loci
 - From 1885 ⇒ 80.23% of the nuclear genome

UJGS

30

Population genetics statistics

- Heterozygosity, F_{ST} , admixture & inbreeding
- Abisko significantly different from other populations

UIGS

• *P. n. adalwinda* (Abisko) subspecies of *Pieris napi* Principal components

METHOD

PC 1

31

• Recover good proportion of insects' genomes

FTHOD

- Both mitochondrial & nuclear
- Phylogenetic relationships + use for population genetics
 Comparison between TE & WGS

CONCLUSION

IIIGS

THANK YOU FOR YOUR ATTENTION

SPECIAL THANKS TO: Niklas WAHLBERG Victoria TWORT

Marianne ESPELAND Christoph MAYER

Christopher W. WHEAT

Department of Biology (Lund University)

BIG4 Members (supervisors & students)

Museums: Lund, Bonn, Copenhagen; Leiden, Stockholm & Tokyo

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłdowska-Curie grant agreement No. 6422141