Détection et classification d'animaux sur des séquences d'images.

Paul Tresson

Philippe Tixier, William Puech et Dominique Carval

le 22 mars 2022 CBGP

Modèle d'étude : Le charançon du bananier

Modèle d'étude : Le charançon du bananier

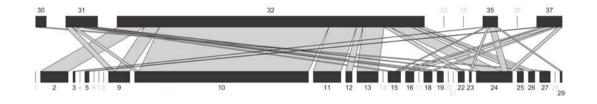
Modèle d'étude : Le charançon du bananier

Méthodes de lutte

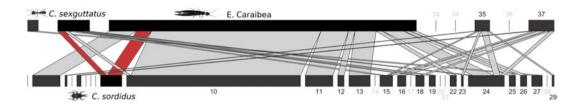
- Lutte chimique n'est presque plus pratiquée en France
- ► Pièges à phéromones
- Jachères
- Rotations

- ▶ Import d'ennemis infructueux (e.g. Plaesius javanus)
- Pas de parasites ou parasitoïdes spécifiques
- Prédateurs généralistes:

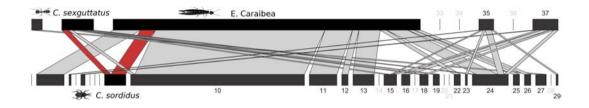
- ▶ Import d'ennemis infructueux (e.g. Plaesius javanus)
- Pas de parasites ou parasitoïdes spécifiques
- Prédateurs généralistes:
- Fourmis

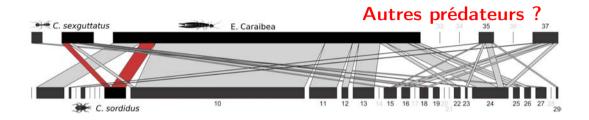

Gold et al., 2001 J. Integr. Pest Manag., Tresson et al., 2021 J. App. Entomol.

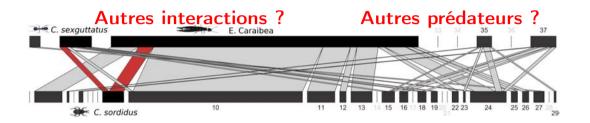
- ▶ Import d'ennemis infructueux (e.g. Plaesius javanus)
- Pas de parasites ou parasitoïdes spécifiques
- Prédateurs généralistes:
- Fourmis
- Dermaptères


Gold et al., 2001 J. Integr. Pest Manag., Tresson et al., 2021 J. App. Entomol.

- ▶ Import d'ennemis infructueux (e.g. Plaesius javanus)
- Pas de parasites ou parasitoïdes spécifiques
- Prédateurs généralistes:
- Fourmis
- Dermaptères
- Araignées


Gold et al., 2001 J. Integr. Pest Manag., Tresson et al., 2021 J. App. Entomol.



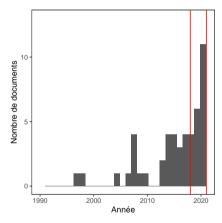

Stade cible?

Stade cible ? Nécrophagie ?

Stade cible ? Nécrophagie ?

Stade cible ? Nécrophagie ?

Besoin d'une information contextualisée


Besoin d'une information contextualisée

Je ne crois que ce que je vois

Pièges photos

Analyse automatique

"computer" AND "vision" AND "ecology"

- ► Satellite, microscopie, pièges photos
- Principalement de l'identification (ex: PlantNet)

Quelles méthodes d'analyse d'images sont pertinentes en écologie ?

Comment utiliser les images pour analyser les interactions écologiques ?

Introduction

Soustraction de fond (analyse manuelle)

Réseaux de neurones (analyse automatique)

Discussion

Description des parcelles

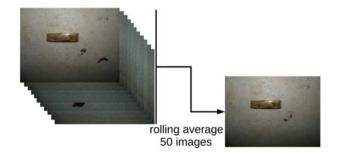
Dispositif

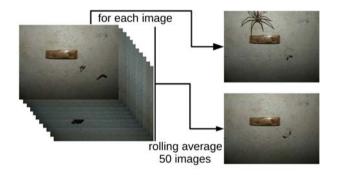
Dispositif

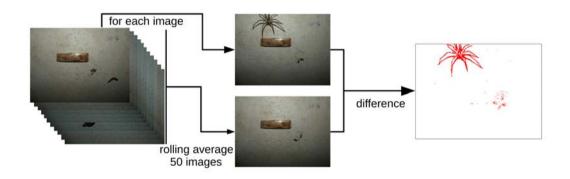
Dispositif

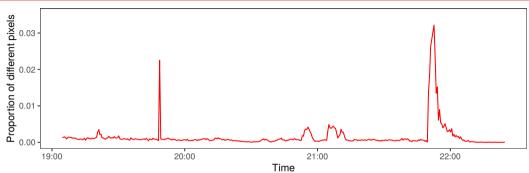
► 5 parcelles

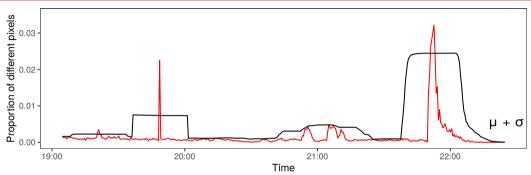
- ▶ 5 parcelles
- ▶ 5 points de mesures de proies sentinelles par parcelle

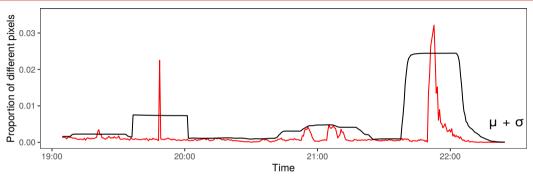

- ► 5 parcelles
- ▶ 5 points de mesures de proies sentinelles par parcelle
- ► 5 répétitions dans le temps

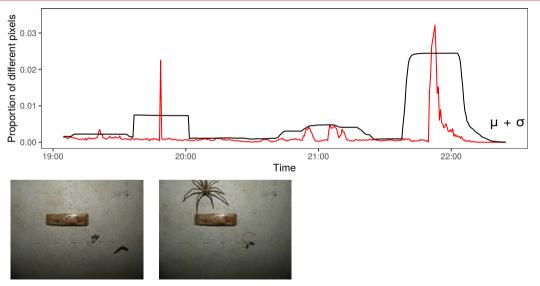

- ▶ 5 parcelles
- ▶ 5 points de mesures de proies sentinelles par parcelle
- ► 5 répétitions dans le temps
- ► Timelapse 24 h avec une image toutes les 30 s

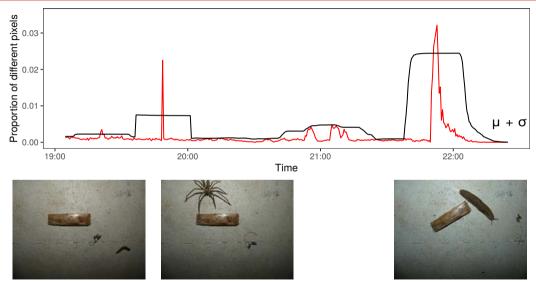

- ▶ 5 parcelles
- ▶ 5 points de mesures de proies sentinelles par parcelle
- ► 5 répétitions dans le temps
- ► Timelapse 24 h avec une image toutes les 30 s
- ▶ 125 jours d'observation


- ▶ 5 parcelles
- ▶ 5 points de mesures de proies sentinelles par parcelle
- ► 5 répétitions dans le temps
- ► Timelapse 24 h avec une image toutes les 30 s
- ▶ 125 jours d'observation
- ▶ 300 000 images pour 3000 h d'observation



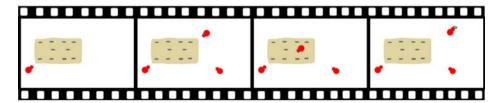






Analyse de la prédation

Adultes



Analyse de la prédation

Adultes

Œufs

Aperçu général

- ▶ 10% des images sélectionnées
- ▶ 10 heures d'analyse
- ► Au moins 1800 individus appartenant à 68 espèces différentes
- ▶ 82/250 charançons prédatés
- ► 734/1250 œufs prédatés

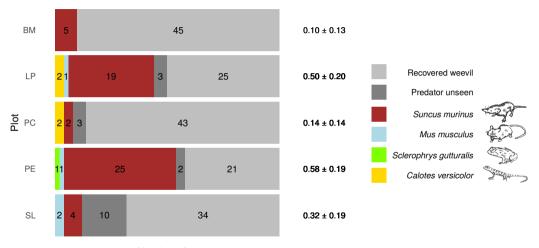
Aperçu général

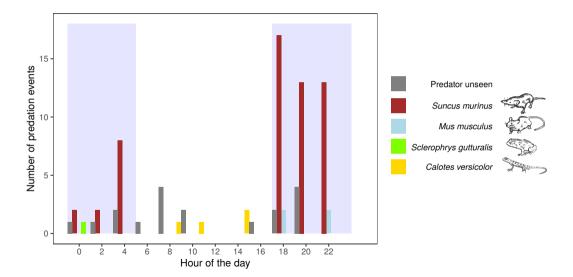
Les prédateurs des charançons adultes sont...

Aperçu général

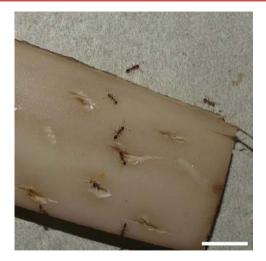
Les prédateurs des charançons adultes sont... des vertébrés !

Mus musculus


Calotes versicolor

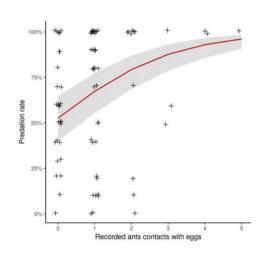

Suncus murinus

Sclerophrys gutturalis

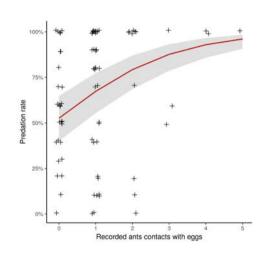


Number of predation events

Importance de ces résultats


- Pas d'invertébrés
- ► Vertébrés mentionnés uniquement de manière anecdotique
- Pas de quantification
- Crapauds suspectés (Vinatier, com. pers.)

Bande blanche = 1 cm


Bande blanche = 1 cm

p-value < 0.001 (GLMM parcelle en facteur aléatoire)

Bande blanche = 1 cm

p-value < 0.001 (GLMM parcelle en facteur aléatoire)

Bande blanche = 1 cm

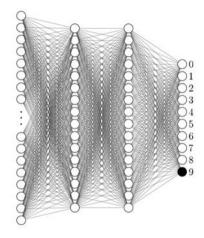
Bande blanche = 1 cm

Importance de ces résultats

- Confirmation du rôle des fourmis et dermaptères
- ► Identification de stades cibles
- Nécrophagie
- ▶ Blattes et gastéropodes ignorés par biais d'échantillonnage ?

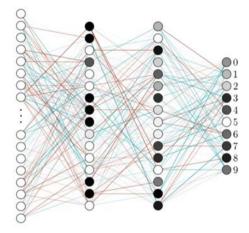
Introduction

Soustraction de fond (analyse manuelle)


Réseaux de neurones (analyse automatique)

Discussion

Structure d'un réseau de neurones



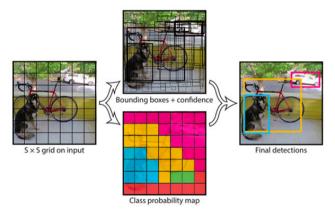
Sanderson, 2017

Apprentissage d'un réseau de neurones

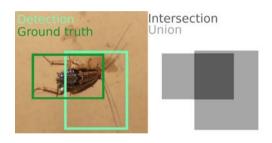
Sanderson, 2017

Usages

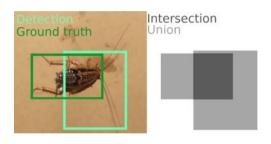
Jouer au go

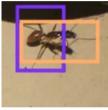


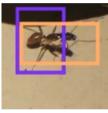
Générer des images



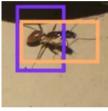
Détecter des objets...

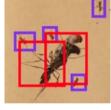

Détection d'objets avec YOLO


Redmon et al., 2015 CVPR

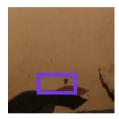

► Intersection over Union

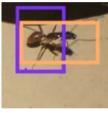
- ► Intersection over Union
- ► True Positive (TP) si :
 - Classe correcte
 - IoU > seuil

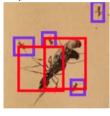

mauvaise classe

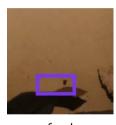


mauvaise classe


doublon




doublon


 $\quad \text{fond} \quad$

mauvaise classe

doublon

fond

False Negative (FN)

non détecté

$$precision = \frac{TP}{TP + FP}$$

$$\mathsf{recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

$$\textbf{F1} = 2 \times \frac{\textit{precision} \times \textit{recall}}{\textit{precision} + \textit{recall}}$$

Average Precision (AP):

Aire sous la courbe precision - recall Pour chaque classe

mean Average Precision (mAP) :

Moyenne des AP

Protocole

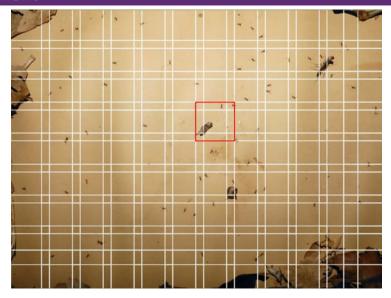
- ► Parcelles au Costa-Rica
- ► Images toutes les 30 s
- ► 3 nuits
- ► Œufs, larves et adultes (vivants et morts)

Caractéristiques du jeu de données

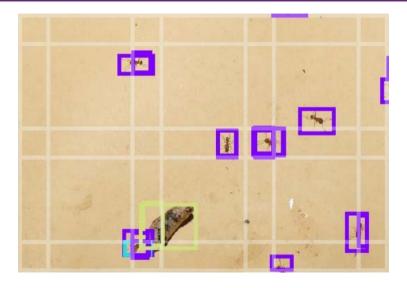
- ► Images originales de 3000 × 4000 *pixels*
- ▶ 189 images labellisées
- 4087 animaux observables
- 23 classes présentes
- ▶ 95 images d'entraînement, 94 de test

Exemples d'images

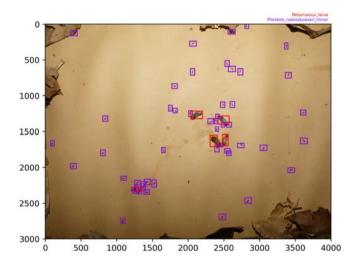
Exemples d'images


Exemples d'images

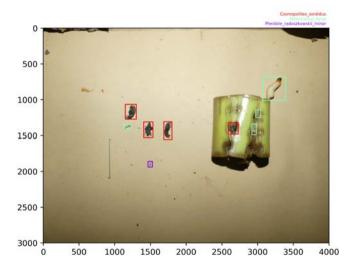
Pré-traitement


Pré-traitement

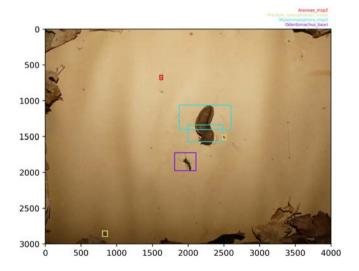
Post-traitement

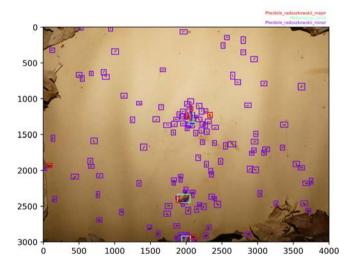


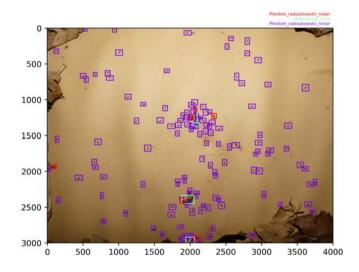
Post-traitement

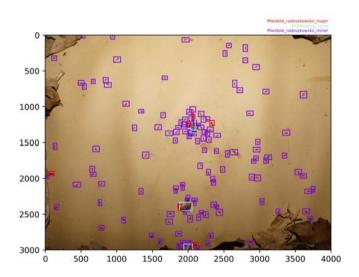


Post-traitement

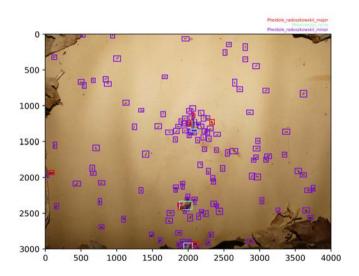



Precision	Recall	F1-score
0.86	0.88	0.87

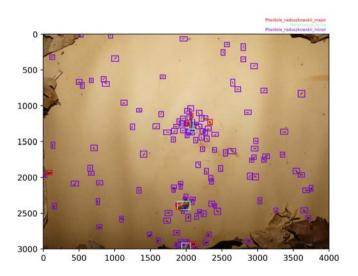

Precision	Recall	F1-score
0.86	0.88	0.87

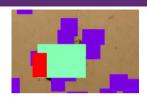


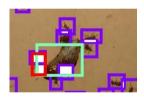
Precision	Recall	F1-score	
0.86	0.88	0.87	

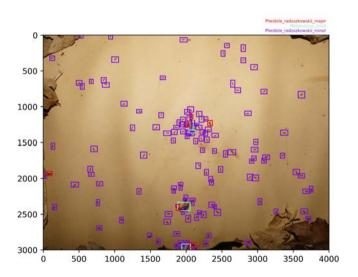


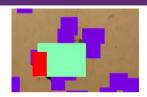
Precision	Recall	F1-score
0.86	0.88	0.87

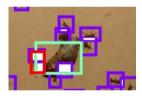


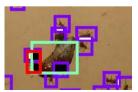


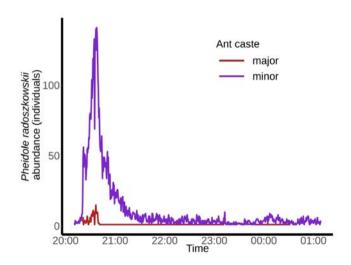


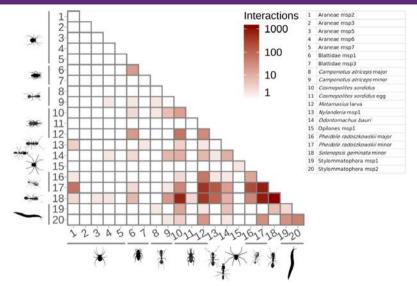


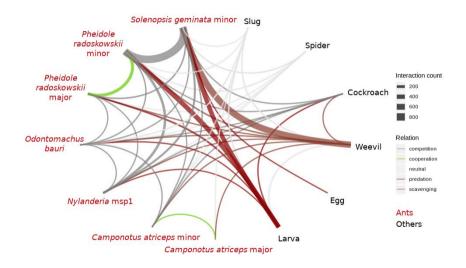








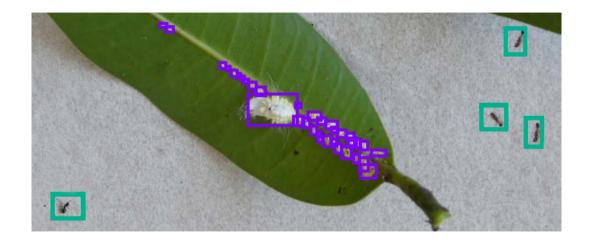



Résultats : Abondance

Résultats : Interactions

Résultats : Interactions

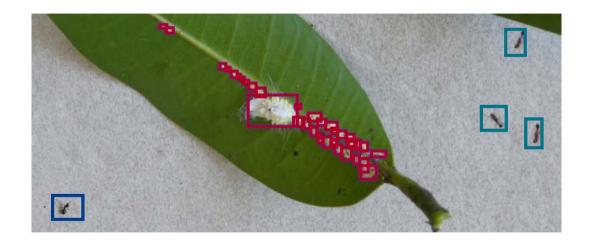
Super-classes	Classes	train	test	$AP(\pm\sigma)$
Ant	10	1467	1395	0.84 ± 0.29
Cockroach	3	35	31	0.18 ± 0.15
Egg	1	89	85	0.85 ± 0.00
Larva	1	296	294	0.94 ± 0.00
Slug	2	16	14	0.63 ± 0.55
Spider	6	18	14	0.64 ± 0.50
Weevil	1	173	167	0.90 ± 0.00

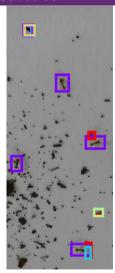

Super-classes	Classes	train	test	$AP(\pm\sigma)$
Ant	10	1467	1395	0.84 ± 0.29
Cockroach	3	35	31	0.18 ± 0.15
Egg	1	89	85	0.85 ± 0.00
Larva	1	296	294	0.94 ± 0.00
Slug	2	16	14	0.63 ± 0.55
Spider	6	18	14	0.64 ± 0.50
Weevil	1	173	167	0.90 ± 0.00

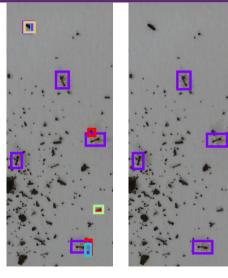
Super-classes	Classes	train	test	$AP(\pm\sigma)$
Ant	10	1467	1395	0.84 ± 0.29
Cockroach	3	35	31	0.18 ± 0.15
Egg	1	89	85	0.85 ± 0.00
Larva	1	296	294	0.94 ± 0.00
Slug	2	16	14	0.63 ± 0.55
Spider	6	18	14	0.64 ± 0.50
Weevil	1	173	167	0.90 ± 0.00

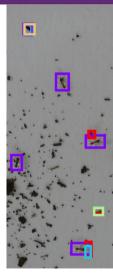
Comment améliorer la robustesse de la méthode ?

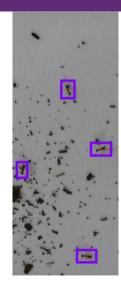
Comment améliorer la robustesse de la méthode ? Classification hiérarchique










Non hiérarchique

Non hiérarchique

Hiérarchique

Métrique	Non hiérar.	Hiérarchique	Gain
Precision	0.45	0.75	0.30
Recall	0.92	0.90	-0.02
F1-score	0.60	0.81	0.21
mAP	0.47	0.74	0.27

Non hiérarchique

Hiérarchique

Introduction

Soustraction de fond (analyse manuelle)

Pertinence des outils

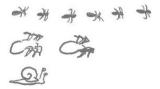
Soustraction de fond

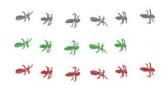
(Analyse manuelle)

Réseaux de neurones

(Analyse automatique)

Soustraction de fond Expérience *in situ* Réseaux de neurones Conditions contrôlées




Soustraction de fond

Expérience in situ Forte variabilité

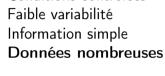
Conditions contrôlées Faible variabilité

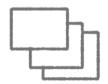
Soustraction de fond

Expérience *in situ*Forte variabilité
Information abstraite

Réseaux de neurones

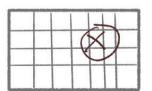
Conditions contrôlées Faible variabilité Information simple


Prédation?



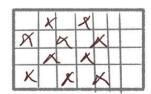
Soustraction de fond

Expérience *in situ*Forte variabilité
Information abstraite **Données peu nombreuses**



Réseaux de neurones

Conditions contrôlées


Soustraction de fond

Expérience in situ
Forte variabilité
Information abstraite
Données peu nombreuses
Expérience ponctuelle

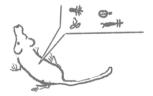
Réseaux de neurones

Conditions contrôlées Faible variabilité Information simple Données nombreuses Expérience répétée

Proies sentinelles et images Barcoding ADN

Proies sentinelles et images
Toute l'information visible

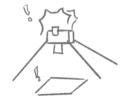
Barcoding ADN Aussi consommation cachée


Proies sentinelles et images

Toute l'information visible Information prédation

Barcoding ADN

Aussi consommation cachée Information régime alimentaire



Proies sentinelles et images

Toute l'information visible Information prédation Biais expérimentaux

Barcoding ADN

Aussi consommation cachée Information régime alimentaire Biais échantillonnage

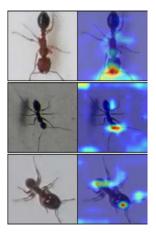
Proies sentinelles et images

Toute l'information visible Information prédation Biais expérimentaux **Mise en place simple**

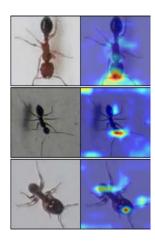
Barcoding ADN

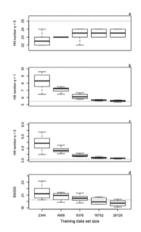
Aussi consommation cachée Information régime alimentaire Biais échantillonnage Protocole complexe

Proies sentinelles et images

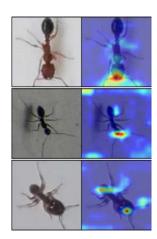

Toute l'information visible Information prédation Biais expérimentaux Mise en place simple

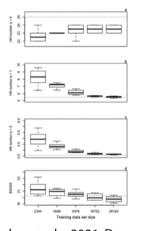
Barcoding ADN


Aussi consommation cachée Information régime alimentaire Biais échantillonnage Protocole complexe


Complémentarité des méthodes

Perspectives


Perspectives



Durden et al., 2021 Progress in Oceanography

Perspectives

Durden et al., 2021 Progress in Oceanography

Romero-Ferrero et al., 2019 Nature Methods

Merci de lon lon lotre attention