

A multi-agent model of entomovectoring for fruit fly management in Senegal

Esther Gnilane DIOUF

Thesis Director: Pr Saliou NDIAYE

Co-director: Dr Cyril PIOU

Supervisor: Dr Thierry BREVAULT

Dakar, March 02 2021

Question

Under which conditions would entomovectoring be effective to protect a set of mango orchards in Senegal?

Estimate fruit production losses according to (number of released individuals, release date, frequency, site, pulse)

Modelled processes

Premating behavior (lek, partner choice)

Development and mortality

Pathogenic transmission and mortality

Egg laying

3

Initialization

Intensive landscape

Patch acceptance: 116 eggs

• Initial fly number: 100

Ratio female/male: (1:1) (Yonow et al.2004)

Simulation platform: Netlogo

Simulation example

Model outputs example

Results 1/2

1. No release / sterile male release

Results 2/2

2. No release / sterile infected male release

Conclusion

- ☐ Fly population decrease
- ☐ Results are more homogenous in the case of a sterile male release (for the moment, no special interest of entomovectoring)