Presenting project MAEVA: Mammalian Evolution in Anthropized Environments

(Marie Sklodowska-Curie Global Fellowship)

Samuel Ginot

Agricultural and urban areas are spreading.

Agricultural and urban areas are spreading.

More and more species are becoming impacted by these changing environments => biodiversity hotspots like West Africa ('Guinean Forests').

Agricultural and urban areas are spreading.

More and more species are becoming impacted by these changing environments => biodiversity hotspots like West Africa ('Guinean Forests').

Studying how **anthropization impacts** biodiversity is important in terms of **conservation**, **health** and **pest control**.

Biologists argue that it is an **opportunity** to answer **fundamental evolutionary questions**, studying them in 'real-time' (Thompson et al. 2018)

Example case study: Badyaev et al. 2008, Evolution

House finch male, *Haemorhous mexicanus*. John Benson, Wikimedia

Univ. of Arizona (Tucson)

Mount Wesson (Saguaro park)

Example case study: Badyaev et al. 2008, Evolution

House finch male, *Haemorhous mexicanus*. John Benson, Wikimedia

Mount Wesson (Saguaro park)

Differences in diet = Strong selection for different beak morphologies.

- Differences in bite forces.
- Produce different mating songs.
- Genetic differentiation.
- → Maintenance of local adaptation
- + isolation of populations.

Anthropized environments have large differences with surrounding 'natural areas', and can therefore produce strong selection on organisms.

Wikimedia Commons

MAEVA aims at understanding **how small mammals**, in particular those living in contact with humans **are evolving and adapting** to the fast **modifications** humans are producing.

Requires species that can be found in **various environments**, including anthropized ones, to **compare between populations**.

Are there differences between populations?

- Local adaptation to new habitats / diets.
- Otherwise, these species are versatile and can manage in very different conditions.

Requires species that can be found in **various environments**, including anthropized ones, to **compare between populations**.

Are there differences between populations?

- Local adaptation to new habitats / diets.
- Otherwise, these species are versatile and can manage in very different conditions.

Species of interest: Rodents, shrews

Mastomys erythroleucus

Praomys daltoni

Crocidura olivieri Crocidura fuscomurina

Rattus rattus

Area of interest: Benin

- All species are known there,
- Part of the **biodiversity hotspot**,
- Fastly **growing population**,
- Partner with CBGP / IRD.

Comparison: populations in anthropized habitats vs. non-anthropized habitats.

Example study: Gryseels et al. (2016) did a transect around the town of Morogoro, Tanzania (>300k inhabitants). Focused on *Mastomys natalensis* (ubiquitous in this region).

Fig. 1 Sampling area. Left: overview of Tanzania and neighbouring countries including the three wide-scale sampling localities. Right: transect sampling localities. The map background is a simplified version of the land cover layer used in the landscape connectivity analyses. The sizes of the circles represent average human population density (per km²) in a 5-km radius around each sampling locality. Numbers indicate meteorological stations from which monthly precipitation averages were obtained (see Fig. S3): 1: Berega, 2: Morogoro, 3: Wami prison farm, 4. Lugoba Mission post, 5. Ruvu.

Used microsatellites and found **differentiation** in the **city population**, with no obvious gene flow barrier. Suggests **strong selection** gradient.

Similar sampling scheme with more complete data:

- **Skull morphology**, defined by muscular and osteological variation.
- **Functional differences**, linked to morphology, but also with direct bite force measurements.

Similar sampling scheme with more complete data:

- **Skull morphology**, defined by muscular and osteological variation.
- **Functional differences**, linked to morphology, but also with direct bite force measurements.

Examples from my PhD. Rodents from Thailand, correlated with land-cover data from ESA. **Differences in skull size and shape**, linked with the **percentage of cultivated land**.

Could be plasticity? No idea about genetic differentiation.

Behaviour / Mate preference

Y-maze:

- Time spent in each branch.
- Time spent sniffing stimulus.
- → Is there assortative mating?

Behaviour / Mate preference

Y-maze:

- Time spent in each branch.
- Time spent sniffing stimulus.
- → Is there assortative mating?

Open field:

- Time in the center.
- Latency before movement.
- Total distance.
- Do anthropophilic animals have behavioural adaptations?

Behaviour / Mate preference

Y-maze:

- Time spent in each branch.
- Time spent sniffing stimulus.
- → Is there assortative mating?

Open field:

- Time in the center.
- Latency before movement.
- Total distance.
- Do anthropophilic animals have behavioural adaptations?

Example Gryseels et al. found a clear differentiation of urban population vs. rural surrounding populations.

Landscape / ecology:

Land cover-land use maps. Stomach contents to analyse diet.

Related, large scale aim:
Interspecifically differences between
commensal / ubiquist / anthorpophobic
species?

Related, large scale aim:
Interspecifically differences between
commensal / ubiquist / anthorpophobic
species?

Several sources of data:

- Specimens obtained during this project.
- Osteological collection of CBGP (5k specimens).
- Osteological collection of ISEM (CERoPath, 3k specimens).

~90 species; 6 'commensal'; 5 'ubiquist'.

Related, large scale aim:
Interspecifically differences between
commensal / ubiquist / anthorpophobic
species?

Several sources of data:

- Specimens obtained during this project.
- Osteological collection of **CBGP** (5k specimens).
- Osteological collection of ISEM (CERoPath, 3k specimens).

~90 species; 6 'commensal'; 5 'ubiquist'.

Specimens from West Africa and Southeast Asia, **independent** origins for **commensalism**.

Comparative anatomy / function across Muridae. Convergences linked to these ecologies?

Comparison with intraspecific patterns. Adaptive changes linked to anthropized environments?

Partner institution

People:

Gualbert Houéménou and students.

Two years stay in Benin.

Hosting institution

People:

Laurent Granjon, Carine Brouat.

One year return phase.

Results in February 2020

Gauthier Dobigny