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The Confounding effect of demography and selection1.2

The co-estimation of demographic parameters and selection Is a long-standing difficulty In

population genetics.

1Li et al (2012); 2Ewing & Jensen (2015)
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The Confounding effect of demography and selectioni?

The co-estimation of demographic parameters and selection Is a long-standing difficulty In

population genetics.

The common approach iIs to assume that selection is LOCALIZED in the genome and that

demography would leave a GENOME-WIDE signature.

Recent works highlight the PERVASIVE role of selection, questioning the universal

pertinence of such approach.

1Li et al (2012); 2Ewing & Jensen (2015)



Impact of SELECTION on the Demography Inference
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Impact of SELECTION on the Demography Inference
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Pairwise Sequentially Markovian Coalescent (PSMC)

Schrider et al. 2016
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Impact of DEI\/IOGRAPHY on the Detectlon of Selectlon

SWEEPFINDER (SFS based method)
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METHODS* to jointly infer demography and selection

Table 1 Summary of the methods presented in the paper whose aim is to jointly estimate selection and demography or estimate

selection while controlling for demographic effects

Methods Strength Weakness References

Combining summary Ease of use Sensitive to both demography Grossman et al. (2010)
statistics and selection

Machine-learning Decrease in the number of false Same as above Pavlidis et al. (2010)
algorithms positive Lin et al. (2011)

Likelihood models Optimal use of the data. Closest Limited to simple models Williamson et al. (2005)

approach to a true joint analysis
of demography and selection
Approximate Bayesian Easy to implement and can
computation - ~consider realistic models

Unbalanced tree Low sensitivity to demography

Approximate method

So far limited to completed
sweeps and selection on
standing variation with
lowtrequency

Li & Stephan (2006)
Nielsen et al. (2009)
Tavaré et al. (1997)
Pritchard et al. (1999)
Beaumont et al. (2002)
Li (2011)

Li et al (2012)



METHODS to jointly infer demography and selection

Simulation of complex dynamics



METHODS to jointly infer demography and selection

Simulation of complex dynamics

Likelihood-free approaches



The "power" of temporal datasets

"We can see evolution in action"”
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Time-series datasets

Phenotypic response to selection

e.g. dark pigmentation in response to UV radiation

0 Generations of selection
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Schlotterer et al (2015)
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Traditional ABC Framework ABC-RF'2 Framework

Requires a large number of simulations ,; Reference table 10-100x less simulations
Requires the choice of informative summary statistics ~7 Automatically find the more informative SSs
Requires to define a tolerance level for acceptance ‘ Not dependent of tolerance level

1Pudlo et al (2016), 2Raynal et al (2017)



ABC-RFL2 Framework: Joint Inference of Demography and Selection in Temporal Data

Genome-wide pattern of
DEMOGRAPHY
and
SELECTION

1Pudlo et al (2016), 2Raynal et al (2017)
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Summary Statistics

Locus-specific:: single site

Hy, D, WCF;

Locus-specific:: windowed

S, 7, Oy, Tajimas'D, Da, ZZ, Z,

Global
Hg, D;,, WCF g
S, r, Oy, Tajimas'D, Da, ZZ, 7,

SFS
Mean, Var, Kurtosis, Skewness,5 % ,95 % quantiles




Posterior Estimates and Inference

Forward-in-time simulation
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Estimated value

Evaluating ABC-RF Performance

True value
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Characterizing Demography

Effective Population Size Ne

Census Size Ncs



Demography: Effective Population Size
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Demography: Effective Population Size

ABC-RF WFABC

Implementation of 2-steps ABC (Bazin, Dawson &
Beaumont 2010)

First step - Infer demography - Ne

prstrong

Second step - Infer selection coefficients
Foll et al. 2014, 2015

Calculation of a summary statistics Fs’ (Jordan & Rayman
2007)



Dem

ABC-RF
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Demography: Census Size
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Demography: Effective Population vs Census Size
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Demography: Effective Population vs Census Size
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Characterizing Selection

Classification: quasi-Neutral and strong Selection

— 1%
Average Genetic Load [ ] = max

Substitution Load, "the cost max
of natural selection”?

| | Mutations|Ns > 1]
Proportion of Strongly Selected Mutations PS trong =

Mutations

lHaldane (1957)



___Classification: “Neutral” vs "Selection”

Proportion of Strongly Selected Mutations

— () P > ()

strong
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strong

quasi-Neutral strong Selection



___Classification: "Neutral” vs " Selection”

qNeutral sSelection

709 164 0,188

201 803 0,200



Classification: “Neutral" vs “Selection”

“Neutral” and “Selection” dynamics

Neutral Selection

It iIs a continuum determined by:
HS — 4N€Iub
Hy, = PrPgp



Selection Dynamics

HS — 4N€//tb

Rate at which beneficial mutations enter the simulation

“Controls how long the population must wait to produce a beneficial mutation”

Adaptation Adaptation

“Mutation Limited” “Mutation Unlimited”

0. <1 0. > 1



Classic hard sweep

(A) Classic hard sweep

A 4 O
A O O . _ . _
O O O A single adaptive allele rises to high
o o : ® o frequency hitchhiking genetic neighbors
that also fix in the population.
l l— logNs generations
s O : :
P S The ratio of selection strength and
o o recombination rate governs the distance
¢ o on the chromosome from the adaptive
A site with depressed diversity following a
sweep.
Expected
> heterozygosity
Time Hme > Time
p—----<
Messer & Petrov 2013 s .
ologNis base pairs

Neher 2013



Hard sweep

Many beneficial mutations




Classes: windows of O,
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Selection: Genetic Load

Random PODs

- prstrong

P \"
)" AR
' A
Wy




Selection: Genetic Load

Random POD
andom S SMALL L but BIG Pstrong

Simulation with lots of small effect mutations

2 - prstrong BIG L bUt SMALL Pstrong

2 Simulation with lots of big effect mutations
It behaves as a Neutral/near-Neutral scenario




Selection: Proportion of Strongly Selected Mutations

|Og10(Pstrong)

© o gNeutral-sSel
o sSel-gNeutral
N~ O sSel-sSel

I I I I I I I I
7 6 5 4 -3 -2 -1 0

|Og10(P5tr0ng)



Application

Temporal population genomics data of the Tasmanian Deuvil
(Sarcophilus harrisii)

Samples before and after the emergence and
spread of Devil Facial Tumor Disease (DFTD)

Low-coverage RADseq data

Adaptation is mutation limited

Soft sweep from Standing Variation (SV)

= ias o SCRERERTINN
http://www.utas.edu.au/news/
2016/2/18/41-securing-the-
future-of-our-tasmanian-devil/




CONCLUSION

ABC-RF Is able to jointly characterize DEMOGRAPHY and SELECTION.



HIGHLIGHTS

1) Characterize selection without additional information:

- mutation within genes,

- Synonymous / non-synonymous information;

- without the position Iin the genome (scaffold or RADtag position)
- Can be applied in non-model organisms

2) See the Impact of selection on estimates of effective population size

3) Allow separating estimates of effective population and census size



PERSPECTIVES 1

For the moment, the model Is very simple:
® de novo mutations - hard sweep;



PERSPECTIVES 1

For the moment, the model Is very simple:
® de novo mutations - hard sweep;

Things to think about ...
e \What Is going to happen if we include background selection?

e How about selection on standing variation?



PERSPECTIVES 2

“Dichotomy” between speed and accuracy

Small Genome: 100 Mb took 3 weeks to produce the reference table with 50,000
simulations for a scenario with de novo mutations



PERSPECTIVES 3

For the moment, the model Is very simple:
¢ define two genomic regions: neutral and under selection Is too simplistic;



PERSPECTIVES 3

For the moment, the model Is very simple:
¢ define two genomic regions: neutral and under selection Is too simplistic;

Things to think about ...
e How about more complex genomic backgrounds?



PERSPECTIVES 4

The power of temporal data:
Allows us to use the information of the allele frequency changes to characterize
selection.

This framework could be used In different settings? Local adaptation
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Genetic Load Proportion of Strongly Selected Mutations



Priors

Table 1: Simulation parameters and their prior distribution

Parameter Prior probability distribution
Mutation rate, u w ~ logro(Uniform)
Recombination rate, r r ~ logio(Uniform)
Population size for the equilibrium phase, N, Neg ~ logio(Uni form)
Population size for the interval, IV, Nes ~ logro(Uni form)

Mean for the DFE ~ I'(mean = k6, shape = 0) k6O ~ logio(Uni form)
Proportion of the genome under selection:
1) Proportion of regions under selection, Pr Pr ~ Uniform

2) Probability of beneficial mutation , Pg Pg ~ log10(Uni form)




1) “RANDOM” pseudo-observed data (PODs) from prior

2) “FIXED” PODs

Evaluating ABC-RF Performance

Table 2: Simulation parameters for the PODs

Parameter

Neutral

Intermediate Selection

High Selection

= ° =

e

DFE mean = k0
PrGWSel
PrMSel
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NA
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le — 7
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ABC Random Forests

Random Decision Forests
Ensemble methods to build predictive models for both CLASSIFICATION and REGRESSION

RANDOM FORESTS creates an entire “FOREST" of uncorrelated decision trees



Random Forests

model ~ 1

Classification

Constant size  Population decline
C D




Random Forests
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Random Forests

model ~ 1
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Random Forests

pl < 3E3124

model ~ 1

Classification

Constant size  Population decline
C D

log,0(0) ~ &

Regression
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Random Forests

pl < 3E3124

model ~ 1

Classification

Constant size  Population decline
C D
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Regression
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Soft sweep

Before selection

O Adaptive mutation

Soft sweep

@ Neutral / slightly deleterious mutation

Beneficial mutation arise on different genetic backgrounds

before any single background can sweep, the backgrounds

carrying the beneficial mutation will spread concurrently.

More genetic diversity will be retained following the fixation of

the beneficial mutation, because diverse genetic background

linked with each beneficial mutations arose in frequency.
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McCoy & Akey 2017



Hard and Soft sweeps

(A) Classic hard sweep (B) Soft sweep (de novo mutations) (C) Soft sweep (standing variation)

Time Time Time

TRENDS in Ecology & Evolution

Messer & Petrov 2013




(a) Hard selective sweep
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