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Gouskov & al. 2015

The spatial and temporal organisation of individuals in groups

(subpopulation, social group, family...) foster the genetic
differentiation — differences in allele frequencies between groups
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Evolutionary forces :

o Global effect :

o Genetic drift
o Gene flow

o Local effect :

o Mutation
o Selection
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Effect of Gene flow and selection on genetic differentiation

Genome-wide effect
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@ Homogenizes the allele frequencies — decreases the allele
frequencies variance between demes

3/42



Introduction
00®000

Effect of Gene flow and selection on genetic differentiation

Genome-wide effect

Allele frequency

Allele frequency

o] 10 20 30 40 50
Generation

@ Homogenizes the allele frequencies — decreases the allele
frequencies variance between demes

3/42



Introduction
00®000

Effect of Gene flow and selection on genetic differentiation
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@ Increases the allele frequencies variance between demes
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We need to characterize the genetic variability at a genomic scale
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The genomic revolution

@ Very large numbers of markers
— x10°® markers

o Allows to characterize genetic
variability at a pan-genomic
scale and at a lower cost

e High density of markers allows
the use of linkage information

NGS — change in the nature of data

Next Generation Sequencing (NGS) :
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My thesis focuses on the development of new statistical methods of
genetic differentiation analysis from NGS data

@ Development of an estimator of genetic differentiation, from
NGS data
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Main research axis

My thesis focuses on the development of new statistical methods of
genetic differentiation analysis from NGS data

@ Development of an estimator of genetic differentiation, from
NGS data

@ Development of a new method of genetic differentiation
analysis, for the research of signature of selection from high
density NGS data
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Part | : Measuring genetic differentiation from Pool-seq data
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@ Fgr is defined as the portion of the total genetic variance
explained by the genetic variance between subpopulations
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@ Fgr is defined as the portion of the total genetic variance
explained by the genetic variance between subpopulations

@ Fgr is classically estimated under an analysis-of-variance
framework (Weir & Cockerham 1984)
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@ It can be expressed in terms of probabilities of identity in
states for pairs of genes (Cockerham 1973; Rousset 2007)
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@ It can be expressed in terms of probabilities of identity in
states for pairs of genes (Cockerham 1973; Rousset 2007)

@ Fgr can be estimated with Q; and @,
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@ It can be expressed in terms of probabilities of identity in
states for pairs of genes (Cockerham 1973; Rousset 2007)

@ Fg1 can be estimated with Q; and Q>

Equal sample sizes — strictly reduces to the analysis-of-variance
estimator (Weir & Cockerham, 1984)
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We are interested in the variance of allele frequencies at the
population scale

The Pool-seq — a cost-effective alternative to individual
genotyping
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How can we estimate FsT from Pool-seq data 7
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Allele counts

——> 5000 SNP

Pool-seq data

Read counts
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Island Model, ng =8, N =10 and Fg = 0.2
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directly from read counts IIS
probabilities
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Sample of individuals

Pool-seq (6x)

Alternative : estimation of individual counts by Maximum likelihood
from reads frequencies and pool sizes
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Island Model, ng =8, N =10 and Fg = 0.2
Fer=02
; ) b @ imput : WCg, estimates
- computed from allele counts
&= = estimated by
s maximum-likelihood
« & &

Ind-seq  Pool-seq (coverage)

[m] O20x M50x [D100X

Bias Imput >> bias WCg4
The bias depends on the coverage
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The model

We have developed 135%01, a new estimator of Fgr for Pool-seq
data, in an analysis-of-variance framework?
@ The total variance is decomposed into reads within individuals,
individuals within demes and among demes

Hivert et al. 2018.
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data, in an analysis-of-variance framework?

@ The total variance is decomposed into reads within individuals,
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@ We assume an equal individual’s contribution into the pool of
DNA (multinomial distribution of the reads)
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The model

~ 00l _
We have developed FE2”, a new estimator of Fgr for Pool-seq
data, in an analysis-of-variance framework?

@ The total variance is decomposed into reads within individuals,
individuals within demes and among demes

@ We assume an equal individual’s contribution into the pool of
DNA (multinomial distribution of the reads)

Epool _ Zk[(cl—D2) S Crilfp—#g)2—(D2—D3) 3¢ Cliﬁ'i;k(l_ﬁ'i;k)]
ST Sh[(Ci—D2) 74 Cui(fris—74)*+(ne —1) (D2 = D3 ) 374 Critryn (1= 7k )]

o We show that, in the limit case where all pools have the same

size n:
PN 1 1_©r n
P :1—( A) (o
1— @ n—1

Hivert et al. 2018.
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Island Model, ng =8, N =10 and Fg = 0.2

Genetic differentiation (Fsr)
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. A 1 .
Bias FIP” =~ bias WCsg4
Independently on pool size, coverage and Fgr value
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Vol. 27 no. 24 2011, 3435-3436
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Genetics and population analysis Advance Access publication October 23, 2011
PoPoolation2: identifying differentiation between populations
using sequencing of pooled DNA samples (Pool-Seq)

Robert Kofler, Ram Vinay Pandey and Christian Schiéttereff]
Institut fiir Populationsgenetik, Vetmeduni Vienna, Veterinérplatz 1, A-1210 Wien, Austria
Associate Editor: Jeffrey Barrett
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Island Model, ng =8, N =100 and FgT = 0.2
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@ PP2, : Popoolation2 estimator
computed from read counts

PP24 estimates are biased and it depends on the coverage.
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Island Model, ng =8, N =100 and FgT = 0.2

Fsr=0.2
e s =
3 @ NCg;3 : Heterozygosity based
§ 21 - estimator (Nei & Chesser 1983)
= computed from individual data
= [
=R - @ PP2, : Popoolation2 estimator
N computed from read counts
4\0‘9 & & &
Ind-seq  Pool-seq (coverage)
[m] O20x Msox [D100X

PP24 estimates are biased and it depends on the coverage.
It converges to the Nei and Chesser’s estimator (NCsg3)? as the

2Nei and Chesser 1938.
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Molecular Ecology (2017) 26, 25-42 doi: 10.1111/mec.13805

SPECIAL ISSUE: THE MOLECULAR MECHANISMS OF ADAPTATION AND
SPECIATION: INTEGRATING GENOMIC AND MOLECULAR APPROACHES

Adaptive genomic divergence under high gene flow
between freshwater and brackish-water ecotypes of
prickly sculpin (Cottus asper) revealed by Pool-Seq
STEFAN DENNENMOSER,*f STEVEN M. VAMOSI, + ARNE W. NOLTE
*Max-Planck Institute for Evolutionary Biology, August Thienemann Strasse 2, 24306, Plin TDepartiment of

Biological Sciences, University of Calgary, 2500 Universify Drive NW, Calgary AB, Canada T IN4, tinstitute for Biology,
Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
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Conclusion

We developed an unbiased estimator of Fg1 for Pool-seq data, in
an analysis-of-variance framework.

@ The accuracy is barely distinguishable from the
analysis-of-variance estimator for individual data (Weir &
Cockerham, 1984).
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Conclusion

We developed an unbiased estimator of Fg1 for Pool-seq data, in
an analysis-of-variance framework.

@ The accuracy is barely distinguishable from the
analysis-of-variance estimator for individual data (Weir &
Cockerham, 1984).

@ The accuracy does not depend on the coverage or on the pool
size.

@ Although our estimator is sensitive to uneven contributions of
individual DNAs in each pool, we found that it was robust to
sequencing errors, ascertainment bias, unequal sample sizes
and variable coverages.
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Conclusion

@ We focused on global (multi-locus) genetic differentiation
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Conclusion

@ We focused on global (multi-locus) genetic differentiation

What about selection ?

@ It has been proposed to identify loci under selection from
genomic scan of differentiation
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Conclusion

locus
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Conclusion
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locus

@ How to distinguish local effect (selection) from global effect
(demography) ?
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Part Il : A hierarchical Bayesian model for measuring the extent of
local adaptation using linkage disequilibrium information
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Allele frequency

Allele frequencies distribution can be characterized conditionally on
some demo-genetic model
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A Genome-Scan Method to Identify Selected Loci Appropriate for Both
Dominant and Codominant Markers: A Bayesian Perspective

Matthicu Foll' and Oscar Gaggiotti

Laboratoire d'Fealogie Alpine (LECA), CNRS UMR 5553, 38041 Grenoble Cedex 09, France
Manuscript reccived June 3, 2008

Accepted for publication July 23, 2008
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A Genome-Scan Method to Identify Selected Loci Appropriate for Both
Dominant and Codominant Markers: A Bayesian Perspective

Matthieu Foll' and Oscar Gaggiotti

Laboratoire d'Feologie Alpine (LECA), CNRS U)

Manuscript re
Accepted for public

INVESTIGATION

Detecting and Measuring Selection from Gene
Frequency Data

Kevin J. Dawson,' and Mark A, Beaumont'
o, Wontaclir Supmg) 31963

Renaud Vitalis, *"* Mathieu Gautie

st Sanger Institute, Hinxton, CB10 154, Unit
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Most methods generally neglect the information brought by linkage
disequilibrium (LD) among genetic markers
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Positive selection

3Storz 2005.
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How to account for LD information?

— Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian
model to the use of multi-allelic markers

1
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SNPs haplotypes

(multiallelic markers)
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How to account for LD information?

— Extend SelEstim (Vitalis et al. 2014), a hierarchical bayesian
model to the use of multi-allelic markers

Adaptive K allele sliding window

SNP focal 1 SNP focal 2

Chr. 1 101111000101010001000101010 010110
1000011100007 101101001101011070110000100
1111110011010100011101110100010110010110
001110000101110001100101010111010111001"
101111000101110101100101010 011100

Clwr 6 1011110001010011011010010100111001010110
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The model
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The (unknown) allele
frequencies. Approximation
of a diffusion process as
prior distribution

- migration-drift-selection
equilibrium
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The model

Infinite island model: the population
frequencies depend on M; = 4N;m,;
and the frequencies in the migrant
pool
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The model

Genome-wide

Locus-specific

Population and locus-specific

Indicator variable
(one allele under
selection)
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The decision criterion
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@ We use the Kullback-Leibler Divergence (KLD) as a distance
between the posterior distributions of the d;’s and a centering
distribution
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Evaluation by simulations

individual-based forward-time simulations with demography and
selection

Island model

N = 1000 diploid individuals

5 chromosomes of 5 Mb (selection on chromosome 1)
density of markers : 125 SNP/Mb

500 replicates per scenario
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Evaluation by simulations

(1) Genotype data (SNP) s SHERIE s e

Simulated haplotVY

Locus 4
chr.1

chr. x

(2) Haplotype Clustering

Adaptive K allele sliding window
SNP focal 1 SNP focal 2

v
Chr. 1 101111000101010001000101010 010110 —) SelEstim analysis conducted
100001110007 101101001101011010110000100 on Haplotype markers

1111110011010100011101110100010110010110
0011100001011100011001010101110101110011
101111000101110101100101010 011100
Chr. 6 1011110001010 110110100101&0111001010110
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Example of SelEstim outputs

A. SelEstimgyp B. SelEstimyap K=10
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Method of analysis

A. SelEstimsyp B. SelEstimyue K=10
1
i Histogram of Smax
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Method of analysis

A. SelEstimgyp B. SelEstimyue K= 10

- -
:
(1
006400 5006 10807 156:07 20807 258407 008400 50808 10807 15e:07 208407 2856:07
Positon (bp) Posiion (op)

Frequency

Histogram of Smax

Type I error: 5%

SmaxKLD_Hap
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Power for Island Model

HardSweep
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@ Improved statistical power with haplotype-based analyses (vs.
SNPs)
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Power for Island Model

e FLK* is an extent of the LK test (Lewontin and Krakauer
1973) to account for the hierarchical structure of populations

@ HapFLK>Y extent the model FLK to the use of haplotype data
(HapFLK has is own clustering algorithm)

Both models are expected to better perform under a pure drift
demography

“Bonhomme et al. 2010.
SFariello et al. 2013.
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Power for Island Model

HardSweep

Power

002 004 006 008 010

Type | error
— - SelEstim SNPs — SelEstim Hap
= - FLK ~— HapFLK

@ Improved statistical power with haplotype-based analyses (vs.
SNPs)

@ Outperform FLK and HapFLK
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Power for Pure Drift Model

HardSweep

Power
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Type | error

= - SelEstim SNPs —— SelEstim Hap

@ Improved statistical power with haplotype-based analyses (vs.
SNPs)
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Power for Pure Drift Model

HardSweep

Power

T T T T T

002 004 006 008 0.0
Type | error

— - SelEstim SNPs —— SelEstim Hap

= - FLK —— HapFLK

@ Improved statistical power with haplotype-based analyses (vs.
SNPs)

e Fall behind FLK and HapFLK
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We considered hard-sweep scenarios. What happens with
soft-sweep?
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Soft-sweep — many alleles under selection (departure from the
model assumption)
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Conclusion

We developed a hierarchical bayesian model to measure the extent
of local adaptation from haplotype data.

@ LD information brought by haplotype data — Increases the
detection power of selection

@ Be aware of the underlying demo-genetic models and
assumptions as well as the robustness of the methods to model

misspecifications
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General conclusion and perspectives

In this thesis, | developed new statistical methods of genetic
differentiation analysis for NGS data in different framework :

A summary statistic of Fg1 for Pool-seq data in a frequentist
approach

@ To properly estimate the genetic differentiation from Pool-seq
data, we need to account for the different levels of sampling

@ Use of biased estimators — problem for genome scan when
variable coverage on the genome
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In this thesis, | developped new statistical methods of genetic
differentiation analysis for NGS data in different framework :

A hierarchical bayesian model for the detection of signature of
selection from haplotype data
@ LD information brought by high density data increases the
power to detect selection
@ We considered an equilibrium model — beware of confonding
effects (allele surfing...)
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General conclusion and perspectives

In this thesis, | developped new statistical methods of genetic
differentiation analysis for NGS data in different framework :

A hierarchical bayesian model for the detection of signature of
selection from haplotype data

@ LD information brought by high density data increases the
power to detect selection

@ We considered an equilibrium model — beware of confonding
effects (allele surfing...)

The nature of the data used in the two parts are different
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General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq 7

@ Models exist but need information about the pool of
haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al.
2011) or are specifically designed for E&R experiences
(Franssen et al. 2017).
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General conclusion and perspectives

Is it possible to estimate haplotype frequencies from Pool-seq 7

@ Models exist but need information about the pool of
haplotypes (Cao et Sun 2015; Kessner et al. 2013; Long et al.
2011) or are specifically designed for E&R experiences
(Franssen et al. 2017).

s it possible to account for LD with unphased data (i.e Pool-seq) ?

@ Investigation of a smoothing model incorporate in SelEstim to
account for the spatial correlation between markers
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General conclusion and perspectives

Genome scans are a first step to identifying putative genomic
regions under selection

@ Poor reproducibility among methods (Pritchard et al. 2010)

e Functional validation of candidate genes
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