Fitness effect of mutations between phases of the life cycle of the root-rot fungus Heterobasidion parviporum

Pierre-Henri Clergeot, Nicolas Rode, Sylvain Glémin, Mikael Brandström-Durling, Åke Olson

Collaborators

Fitness measurements Genomic analyses

P-H. Clergeot

Ake Olson

Mikael Brandström-Durling

Collaborators

Fitness measurements Genomic analyses

Ake Olson

P-H. Clergeot

Theoretical modeling

Mikael Brandström-Durling

Collaborators

Fitness measurements Genomic analyses

Ake Olson

P-H. Clergeot

Theoretical modeling

Sylvain Glémin

Mikael Brandström-Durling

Alternation between ploidy levels:

Eukaryotic life cycle

Haploid cells

Diploid cell

Alternation between ploidy levels:

Eukaryotic life cycle

> fertilization

Alternation between ploidy levels:

- > fertilization
- > meiosis

Diversity of eukaryotic life cycles

Diversity of eukaryotic life cycles

(Otto & Gerstein 2008)

Diversity of eukaryotic life cycles

Development of the haploid phase

Development of the diploid phase

(Rescan 2016)

→ Physiological or genetic effects of ploidy levels

Physiological effects of ploidy

- Surface to volume ratio larger in haploid compared to diploid and polyploid cells
- Haploids favored in nutrient-limiting conditions
- Diploids favored in non nutrient-limiting conditions

Physiological effects of ploidy

- Surface to volume ratio larger in haploid compared to diploid and polyploid cells
- Haploids favored in nutrient-limiting conditions
- Diploids favored in non nutrient-limiting conditions
- Fitness similar in haploids and diploids

(Mable 2001)

Physiological effects of ploidy

- Surface to volume ratio larger in haploid compared to diploid and polyploid cells
- Haploids favored in nutrient-limiting conditions
- Diploids favored in non nutrient-limiting conditions
- Fitness similar in haploids and diploids

- → No clear physiological effect of ploidy level
- → Genetic effects of ploidy?

(Mable 2001)

Fitness effect at locus k

> in haploids:

$$A_k$$
 1

$$a_k 1 - \sigma_k$$

a

Fitness effect at locus k

> in haploids:

$$A_k$$
 1

$$a_k 1 - \sigma_k$$

➤ in diploids:

Fitness effect at locus k

> in haploids:

$$A_k$$
 1

$$a_k 1 - \sigma_k$$

➤ in diploids:

$$A_kA_k$$
 1

$$A_k a_k = 1 - h_k s_k$$

$$a_k a_k = 1 - s_k$$

Aa

Fitness effect at a random locus

> in haploids:

1

 $1-\bar{\sigma}$

➤ in diploids:

A

* a

AA

Aa

Fitness effect at a random locus

> in haploids:

1

 $1-\bar{\sigma}$

➤ in diploids:

1

 $1 - \bar{h}\bar{s}$

 $1-\bar{s}$

A

* a

AA

Aa

Fitness effect at a random locus

> in haploids:

 $\bar{s} = c_s \bar{\sigma}$

$$1-\bar{\sigma}$$

➤ in diploids:

1

$$1 - \bar{h}\bar{s}$$

 $1-\bar{s}$

Aa

Fitness effect at a random locus

> in haploids:

1

$$1-\bar{\sigma}$$

➤ in diploids:

1

$$1 - \bar{h}c_{s}\bar{\sigma}$$

$$1-c_s\bar{\sigma}$$

A

AA

Aa

Fitness effect at a random locus

- > in haploids:
 - 1

$$1-\bar{\sigma}$$

in diploids:

1

$$1 - \bar{h}c_s\bar{\sigma}$$

$$1-c_{s}\bar{\sigma}$$

Fitness effect at a random locus

- > in haploids:
 - 1
 - $1-\bar{\sigma}$
- ➤ in diploids:

• Diploid phase favored when the effective dominance is lower than one: $\bar{h}c_s < 1$

$$1 - \overline{h}c_s\overline{\sigma}$$

$$1-c_{s}\bar{\sigma}$$

Fitness effect at a random locus

- > in haploids:
 - 1
 - $1-\bar{\sigma}$
- ➤ in diploids:

1

$$1 - \bar{h}c_s\bar{\sigma}$$

$$1-c_s\bar{\sigma}$$

- Diploid phase favored when the effective dominance is lower than one: $\bar{h}c_s < 1$
- Partially recessive in heterozygous diploids:

$$\bar{h} < \frac{1}{2}$$

Fitness effect at a random locus

- > in haploids:
 - 1

$$1-\bar{\sigma}$$

➤ in diploids:

1

$$1 - \bar{h}c_s\bar{\sigma}$$

- Diploid phase favored when the effective dominance is lower than one: $\bar{h}c_s < 1$
- Partially recessive in heterozygous diploids:

$$\bar{h} < \frac{1}{2}$$

> Stronger effect of deleterious mutations in haploids than in homozygous diploids: $c_s < 1$

$$1-c_{s}\bar{\sigma}$$

Fitness effect at a random locus

- > in haploids:
 - 1

$$1-\bar{\sigma}$$

- ➤ in diploids:
 - 1

$$1 - \bar{h}c_s\bar{\sigma}$$

• Diploid phase favored when the effective dominance is lower than one: $\bar{h}c_s < 1$

Partially recessive in heterozygous diploids:

$$\bar{h} < \frac{1}{2}$$

> Stronger effect of deleterious mutations in haploids than in homozygous diploids: $c_{\rm s} < 1$

→ Estimation using mutation accumulation lines

$$1-c_s\bar{\sigma}$$

Serial transfer of random single colonies mutation accumulation (MA)

→ Fixation of spontaneous mutations by drift

(Korona 1999)

• Estimate of the average dominance: $\bar{h} = 0.08$

- Estimate of the average dominance:
- Estimate from other studies:

$$\bar{h} = 0.08$$

 $\overline{h}=0.2$ (Agrawal and Whitlock 2011, Manna et al 2011)

- Estimate of the average dominance:
- Estimate from other studies:
- → Mutations are recessive on average

$$\overline{h} = 0.08$$

$$\overline{h} = 0.2$$

 $\bar{h} < \frac{1}{2}$

(Agrawal and Whitlock 2011, Manna et al 2011)

(Korona 1999)

• Same selection coefficient in haploids and homozygous diploids: $c_{s} pprox 1$

- Same selection coefficient in haploids and homozygous diploids: $c_{s} pprox 1$
- → Effective dominance lower than one:

→ Selection for an increased diploid phase

$$\bar{h}c_s < 1$$

 $\bar{h}c_s < 1$

- Same selection coefficient in haploids and homozygous diploids: $c_{s} pprox 1$
- → Effective dominance lower than one:
- → Selection for an increased diploid phase
- → Diploid yeast in the wild (Landry et al 2006)

Alternative approaches?

- Mutation accumulation is tedious
- Auto-compatibility impedes the construction of homozygous diploids
- Crosses between haploid strains with increasing genetic distance?

Alternative approaches?

- Mutation accumulation is tedious
- Auto-compatibility impedes the construction of homozygous diploids
- Crosses between haploid strains with increasing genetic distance?

(Bernardes et al 20017)

Alternative approaches?

- Mutation accumulation is tedious
- Auto-compatibility impedes the construction of homozygous diploids
- Crosses between haploid strains with increasing genetic distance?

(Bernardes et al 20017)

→ No theoretical framework with effective dominance

 $(\bar{h}c_s)$

Fitness effect at a random locus

> in haploids:

1

$$1-\bar{\sigma}$$

➤ in diploids:

1

$$1 - \bar{h}c_s\bar{\sigma}$$

$$1-c_s\bar{\sigma}$$

Fitness effect at a random locus

> in haploids:

$$w_i = w_0 \exp\left(-\sum_{k=1}^n \sigma_k X_k^i\right)$$

1

$$1-\bar{\sigma}$$

➤ in diploids:

$$W_{ij} = W_0 \exp\left(-\sum_{k=1}^{n} s_k \left(\frac{X_k^i + X_k^j}{2}\right) + d_{ij} \sum_{k=1}^{n} s_k \left(\frac{1 - 2h_k}{2}\right)\right)$$

1

$$1 - \bar{h}c_{s}\bar{\sigma}$$

$$1-c_s\bar{\sigma}$$

Fitness effect at a random locus

> in haploids:

$$w_i = w_0 \exp\left(-\sum_{k=1}^n \sigma_k X_k^i\right)$$

1

 $1-\bar{\sigma}$

➤ in diploids:

$$W_{ij} = W_0 \exp\left(-\sum_{k=1}^{n} s_k \left(\frac{X_k^i + X_k^j}{2}\right) + d_{ij} \sum_{k=1}^{n} s_k \left(\frac{1 - 2h_k}{2}\right)\right)$$

1

Statistical model:

Haploids:

$$1 - \bar{h}c_s\bar{\sigma}$$

$$\ln(w_i) = \ln(w_0) - A_i$$

 $1-c_s\bar{\sigma}$

Fitness effect at a random locus

> in haploids:

$$w_i = w_0 \exp\left(-\sum_{k=1}^n \sigma_k X_k^i\right)$$

1

 $1-\bar{\sigma}$

➤ in diploids:

$$W_{ij} = W_0 \exp\left(-\sum_{k=1}^{n} s_k \left(\frac{X_k^i + X_k^j}{2}\right) + d_{ij} \sum_{k=1}^{n} s_k \left(\frac{1 - 2h_k}{2}\right)\right)$$

1

Statistical model:

Haploids:

$$1 - \bar{h}c_s\bar{\sigma}$$

$$\ln(w_i) = \ln(w_0) - A_i$$

Diploid (cross between strain i and j):

$$1-c_{\rm s}\bar{\sigma}$$

$$\ln(W_{ij}) = \ln(W_0) - c_S \frac{A_i + A_j}{2} + d_{ij}H$$

Fitness effect at a random locus

> in haploids:

$$w_i = w_0 \exp\left(-\sum_{k=1}^n \sigma_k X_k^i\right)$$

1

 $1-\bar{\sigma}$

➤ in diploids:

$$W_{ij} = W_0 \exp\left(-\sum_{k=1}^{n} s_k \left(\frac{X_k^i + X_k^j}{2}\right) + d_{ij} \sum_{k=1}^{n} s_k \left(\frac{1 - 2h_k}{2}\right)\right)$$

1

Statistical model:

Haploids:

$$1 - \bar{h}c_{s}\bar{\sigma}$$

$$\ln(w_i) = \ln(w_0) - A_i$$

Diploid (cross between strain i and j):

$$1-c_{s}\bar{\sigma}$$

$$\ln(W_{ij}) = \ln(W_0) - c_S \frac{A_i + A_j}{2} + d_i H$$

Fitness effect at a random locus

> in haploids:

$$w_i = w_0 \exp\left(-\sum_{k=1}^n \sigma_k X_k^i\right)$$

1

 $1-\bar{\sigma}$

➤ in diploids:

$$W_{ij} = W_0 \exp\left(-\sum_{k=1}^{n} s_k \left(\frac{X_k^i + X_k^j}{2}\right) + d_{ij} \sum_{k=1}^{n} s_k \left(\frac{1 - 2h_k}{2}\right)\right)$$

1

Statistical model:

Haploids:

$$1 - \bar{h}c_s\bar{\sigma}$$

$$\ln(w_i) = \ln(w_0) - A_i$$

Diploid (cross between strain *i* and *j*): $\lim_{M \to \mathbb{R}^n} (W_i) = \lim_{M \to \mathbb{R}^n} (W_i)$

 $\ln(W_{ij}) = \ln(W_0) - c_S \frac{A_i + A_j}{2} + d_i H$ $\Rightarrow c_S < 1 \text{ or } H > 0 \quad (\bar{h} < \frac{1}{2})$

$$1-c_s\bar{\sigma}$$

Heterobasidion parviporum

Heterobasidion parviporum

Homokaryons ~ haploids

Heterobasidion parviporum

Homokaryons ~ haploids

Heterobasidion parviporum

Personance of the hapfold phase

The growth United high interpretation and with with extensive dividence of bibour extensive d

Homokaryons ~ haploids

a b C D e

Heterokaryons ~ diploids

→ Heterokaryons often observed in nature (Joahnneson & Stenlid 2004)

32 samples

32 x 31 crosses

32 samples

32 x 31 crosses

18 homokaryons

32 samples

32 x 31 crosses

18 homokaryons

277 heterokaryons: 18 acceptors (nucleus+cytosplasm) x 32 donors (nucleus only)

Homokaryons ~ haploids

Homokaryons ~ haploids

Homokaryons ~ haploids

Homokaryons ~ haploids

Heterokaryons ~ diploids

→ Genetic distance between parental homokaryons

Homokaryons ~ haploids

Heterokaryons ~ diploids

→ Genetic distance between parental homokaryons

Homokaryons ~ haploids

- → Genetic distance between parental homokaryons
- → Effective dominance lower than one? $(\bar{h}c_s < 1)$

Statistical model

Linear mixed model:

```
\begin{split} \log(growth \ rate_{ijkl}) &= average \ grow \ rate + growth \ rate \ H * \\ genetic \ distance_{ij} + c_s^{Type} \, \frac{growth \ rate \ acceptor_i + groth \ rate \ donor_j}{2} + \\ growth \ rate \ assay_{ijk} + growth \ rate \ plate_{ijkl} + error \end{split}
```

Statistical model

Linear mixed model:

$$\begin{split} \log(growth \ rate_{ijkl}) &= average \ grow \ rate + growth \ rate \ H * \\ genetic \ distance_{ij} + c_s^{Type} & \frac{growth \ rate \ acceptor_i + groth \ rate \ donor_j}{2} + \\ growth \ rate \ assay_{ijk} + growth \ rate \ plate_{ijkl} + error \end{split}$$

→ AICc model selection

Results

	ΔAICc
Genetic distance, c _s ≠1	0.00
Genetic distance, c _s =1	5.47
No genetic distance, c _s ≠1	12.32
No genetic distance, c _s =1	21.54

Results

Linear mixed model:

$$\begin{split} \log(growth \ rate_{ijkl}) &= average \ grow \ rate + growth \ rate \ H * \\ genetic \ distance_{ij} + c_s^{Type} & \frac{growth \ rate \ acceptor_i + groth \ rate \ donor_j}{2} + \\ growth \ rate \ assay_{ijk} + growth \ rate \ plate_{ijkl} + error \end{split}$$

Average growth rate	0.2999	0.0071
growth rate H	0.0071	0.0021
Cs	1.8	0.16

Fitness in haploids:

$$a 1 - \bar{\sigma}$$

Fitness in diploids:

$$AA$$
 1

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

• Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_s < 1$$

Fitness in haploids:

$$a 1 - \bar{\sigma}$$

Fitness in diploids:

$$AA$$
 1

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

• Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_s < 1$$

➤ Partially recessive in heterozygous diploids (H<0)

Fitness in haploids:

$$a 1 - \bar{a}$$

Fitness in diploids:

$$AA$$
 1

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_s < 1$$

- Partially recessive in heterozygous diploids (H<0)</p>
- But stronger effect of deleterious mutations in haploids than in homozygous diploids $c_{\rm s} > 1$

Fitness in haploids:

a
$$1-\bar{\sigma}$$

Fitness in diploids:

$$AA$$
 1

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_{\scriptscriptstyle S} < 1$$

- Partially recessive in heterozygous diploids (H<0)</p>
- But stronger effect of deleterious mutations in haploids than in homozygous diploids $c_s > 1$

$$\bar{h} < \frac{1}{2}$$

$$\bar{h}c_s < \frac{1.8}{2} < 1$$

Fitness in haploids:

$$a 1 - \bar{\sigma}$$

Fitness in diploids:

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_s < 1$$

- ➤ Partially recessive in heterozygous diploids (H<0)
- > But stronger effect of deleterious mutations in haploids than in homozygous diploids $c_{\rm s} > 1$

$$\bar{h} < \frac{1}{2}$$

$$\bar{h}c_s < \frac{1.8}{2} < 1$$

→ Effective dominance lower than one

Fitness in haploids:

$$a 1 - \bar{a}$$

Fitness in diploids:

Aa
$$1 - \bar{h}c_s\bar{\sigma}$$

aa
$$1 - c_s \bar{\sigma}$$

Diploid phase favored when:

$$\bar{h}c_s < 1$$

$$\bar{h} < \frac{1}{2} \text{ or } c_s < 1$$

- Partially recessive in heterozygous diploids (H<0).</p>
- But stronger effect of deleterious mutations in haploids than in homozygous diploids $c_{\rm s} > 1$

$$\bar{h} < \frac{1}{2}$$

$$\bar{h}c_s < \frac{1.8}{2} < 1$$

- → Effective dominance lower than one
- → Diploid phase is actually observed more often in nature (Joahnneson & Stenlid 2004)

Perspectives

Fitness in homokaryons:

$$A_k A_l 1$$

 $A_k a_l 1 - \sigma_k$
 $a_k A_l 1 - \sigma_l$
 $a_k a_l (1 - \sigma_k)(1 - \sigma_l) + \varepsilon_{kl}$
Fitness in heterokaryons:

$$A_{k}A_{k}A_{l}A_{l}$$
 1
 $A_{k}a_{k}A_{l}A_{l}$ 1 - $h_{k}s_{k}$
 $a_{k}a_{k}A_{l}A_{l}$ 1 - s_{k}
 $A_{k}A_{k}A_{l}a_{l}$ 1 - $h_{l}s_{l}$
 $A_{k}a_{k}A_{l}a_{l}$ (1 - $h_{k}s_{k}$) (1 - $h_{l}s_{l}$) + e_{kl}
 $a_{k}a_{k}A_{l}a_{l}$ (1 - s_{k}) (1 - $h_{l}s_{l}$) + $2e_{kl}$
 $A_{k}A_{k}a_{l}a_{l}$ 1 - s_{l}
 $A_{k}a_{k}a_{l}a_{l}$ (1 - s_{k}) (1 - s_{l}) + $2e_{kl}$
 $a_{k}a_{k}a_{l}a_{l}$ (1 - s_{k}) (1 - s_{l}) + $4e_{kl}$

$$\ln(w_i) = \ln(w_0) - A_i - E_i$$

$$\ln(W_{ij}) \approx \ln(W_0) - c_s \frac{A_i + A_j}{2} + d_{ij} \left(H - n \frac{c_E \varepsilon}{2}\right) - c_E \left(E_i + E_j + 2\sqrt{E_i E_j}\right)$$

Perspectives

Fitness in homokaryons:

$$A_k A_l 1$$

 $A_k a_l 1 - \sigma_k$
 $a_k A_l 1 - \sigma_l$
 $a_k a_l (1 - \sigma_k)(1 - \sigma_l) + \varepsilon_{kl}$
Fitness in heterokaryons:

$$A_{k}A_{k}A_{l}A_{l} = 1$$

$$A_{k}a_{k}A_{l}A_{l} = 1 - h_{k}s_{k}$$

$$a_{k}a_{k}A_{l}A_{l} = 1 - s_{k}$$

$$A_{k}A_{k}A_{l}a_{l} = 1 - h_{l}s_{l}$$

$$A_{k}a_{k}A_{l}a_{l} = (1 - h_{k}s_{k})(1 - h_{l}s_{l}) + e_{kl}$$

$$a_{k}a_{k}A_{l}a_{l} = (1 - s_{k})(1 - h_{l}s_{l}) + 2e_{kl}$$

$$A_{k}A_{k}a_{l}a_{l} = 1 - s_{l}$$

$$A_{k}a_{k}a_{l}a_{l} = (1 - h_{k}s_{k})(1 - s_{l}) + 2e_{kl}$$

$$a_{k}a_{k}a_{l}a_{l} = (1 - s_{k})(1 - s_{l}) + 4e_{kl}$$

$$\ln(w_i) = \ln(w_0) - A_i - E_i$$

$$\ln(W_{ij}) \approx \ln(W_0) - c_s \frac{A_i + A_j}{2} + d_{ij} \left(H - n \frac{c_E \varepsilon}{2} \right) - c_E \left(E_i + E_j + 2 \sqrt{E_i E_j} \right)$$

- → Other fitness traits (wood degradation data)
- → New experimental tool to study the life cycle of haploid-diploid organisms

Acknowledgements

P-H. Clergeot

Mikael Brandström-Durling

Ake Olson

Sylvain Glémin

Carl Tryggers Stiftelse Formas

1. Homokaryotic growth (n)

1. Homokaryotic growth (n)

2. Plasmogamy and nuclear exchange

Fungal life cycle

1. Homokaryotic growth (n)

2. Plasmogamy and nuclear exchange

3. Heterokaryotic growth (n + n)

Fungal life cycle

1. Homokaryotic growth (n)

2. Plasmogamy and nuclear exchange

Heterokaryon 1(2)

Heterokaryon 2(1)

3. Heterokaryotic growth (n + n)

→ Homokaryon: haploid→ Heterokaryon: diploid

4. Karyogamy and meiosis in the fruiting body

Liu et al 2017

H. parviporum mating

Crossings

Nuclei acceptor

Nuclei donar

Results

