Trophic Theory of Island Biogeography

GENERATING CONSTRAINED FOOD WEBS

Interaction networks

What are the structural properties exhibited by Interaction networks ?

What are their effects ? Especially on networks stability ?

Theory of Insular Biogeography

Diversity patterns at large scales ? Tool for conservation (SAR)

Interaction networks

Theory of Insular Biogeography

What are the effects of **mainland** food web structural properties on colonization/extinction dynamics ?

Constraints:
Number of species
Number of links
Proportion of basal species
Degree distribution

Cascade model	Niche model	Generalized Cascade model
\checkmark	\checkmark	\checkmark
In expectation	In expectation	In expectation
×	×	×
X	X	X

Method

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
- **Step II**: Select the basal species
- **Step III**: Direct the network

Method

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
- **Step II**: Select the basal species
- **Step III**: Direct the network

N vertices

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
 - Generate a degree sequence

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
 - Generate a degree sequence

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

CDF

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

CDF

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

- Generate a degree sequence
- Is this sequence graphic?
 - Hakimi, S. L. (1962) On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I. Journal of the Society for Industrial and Applied Mathematics, 10, 496-506.

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Generate a degree sequence

Is this sequence graphic?

- Hakimi, S. L. (1962) On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I. Journal of the Society for Industrial and Applied Mathematics, 10, 496-506.
- Generate random undirected simple connected network
 - Viger, F. & Latapy, M. (2005) Random generation of large connected simple graphs with prescribed degree distribution. 11th International Conference on Computing and Combinatorics.

Step I: Generate an undirected network with a given degree distribution, number of links and number of species

Method

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
- **Step II**: Select the basal species
- **Step III**: Direct the network

Step II: Select the basal species: must be disconnected

- Greedy search algorithm
- Graph coloring algorithm
 - Blöchliger, I. & Zufferey, N. (2008) A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research, 35, 960-975

Step II: Select the basal species: must be disconnected

Method

- Step I: Generate an undirected network with a given degree distribution, number of links and number of species
- **Step II**: Select the basal species
- **Step III**: Direct the network

- **Step III**: Direct the network
 - Breadth-first search on graph

- **Step III**: Direct the network
 - Breadth-first search on graph

Explore network from basal species

- **Step III**: Direct the network
 - Breadth-first search on graph

Direct links towards explored species

- **Step III**: Direct the network
 - Breadth-first search on graph

Randomly direct links among explored species

- **Step III**: Direct the network
 - Breadth-first search on graph

Explore one step further

- **Step III**: Direct the network
 - Breadth-first search on graph

Direct links towards explored species

- **Step III**: Direct the network
 - Breadth-first search on graph

Randomly direct links among explored species

Implemented in a C++ framework by <u>Jérôme Duclert</u>

#B: Basal species

Resulting food web

Implemented in a C++ framework by <u>Jérôme Duclert</u>

► Algorithm Random50

New method in development?

Networks properties are strongly linked [Vermaat & al, 2009; Riede & al, 2010; Poisot & Gravel, 2014; Orsini & al, 2015]

Is a property significantly different from a null expectation?

What is the null expectation?

Effects attributed to one property

Spurious correlation?

LETTER

doi:10.1038/nature11214

Disentangling nestedness from models of ecological complexity

Alex James¹, Jonathan W. Pitchford² & Michael J. Plank¹

Frequences

Ν

Property distribution

Ν

When is an ecological network complex? Connectance drives degree distribution and emerging network properties

Timothée Poisot and Dominique Gravel

PeerJ, 2014

N

N + L

Property distribution

Simple MaxEnt models explain food web degree distributions

Richard J. Williams

Theor. Ecol., 2010

Ν

N + L

Frequences

N + L + #B

Property distribution

► Limitations

- Cannibalist links
- ► Reciprocity
- Uniformity of generation

Some results on TTIB

Simulating colonization / extinction dynamic

Some results on TTIB

Simulating colonization / extinction dynamic

Results:

- Size and connectance effects
- Degree distribution effects

Some results on TTIB: Island diversity

Connectance

Colonization-to-extinction ratio

Some results on TTIB: Island diversity

Connectance +

Colonization-to-extinction ratio

Some results on TTIB: Extinction

Poisson Exponential Power-law

Median size

Some results on TTIB: Extinction

