The consequences of demographic stochasticity on fixation

Diala Abu Awad, Camille Coron

CBGP - 21 Feb. 2017

The fate of mutant genes

Evolutionary forces shape the genetic diversity of populations

- Mutation
- Selection
- Drift
- Migration

The fate of mutant genes

Evolutionary forces shape the genetic diversity of populations

- Mutation
- Selection
- Drift
- Migration

The fate of mutant alleles

Evolutionary forces shape the genetic diversity of populations

- Adaptation (fixation of benefical alleles)
- Selection against deleterious alleles
- Neutral diversity (adaptive potential)

The Wright-Fisher model (Genetic drift)

Two absorbing states:

The Wright-Fisher Diffusion

Kimura's diffusion of the Wright-Fisher model

- Probability of fixation
- Time to fixation

The Wright-Fisher Diffusion

A robust method despite strong underlying assumptions:

- Fixed population size
- Panmixia
- Non-overlapping generations

The Wright-Fisher Diffusion

It has been generalised to account for a variety of complications:

- Deterministically varying size (independently of genotypes) i.e.
 Otto and Whitlock 1997
- Inbreeding i.e. Caballero and Hill 1992
- Structured populations i.e. Roze and Rousset 2004
- etc...

Varying population size: A stochastic process

In natural populations:

- Population size varies stochastically
 - Demographic stochasticity
 - Environmental instability

Varying population size: A stochastic process

In natural populations:

- Population size varies stochastically
 - Demographic stochasticity
 - Environmental instability
- There is a potential feed-back between genotypes and population size (i.e. selection for more competitive and/or more fertile individuals)

Varying population size: A stochastic process

It has been shown that the harmonic mean of population size suffices in models with deterministically (and neutrally) varying SiZe (Ewens 1967, Kimura 1970, Otto and Whitlock 1997)

 \rightarrow Is this still valid in stochastically varying populations (with feed-back)?

General model

- Diploid individuals
- Single bi-allelic locus : AA Aa aa
- Population size is a variable and not a parameter

Rescaled birth-and-death process

At each time t the population is represented by a vector (with 1,2,3 representing AA Aa and aa respectively)

$$\left(\mathbf{Z}_{t}^{K}\right)_{t\geq0}=\left(Z_{t}^{1,K},Z_{t}^{2,K},Z_{t}^{3,K}\right)_{t\geq0}$$

which gives the respective number of individuals of each type, divided by K (a scaling parameter that goes to infinity). (Fournier and

Meleard 2004; Champagnat and Meleard 2007; Collet, Meleard and Metz 2012; Coron 2014

If the population is at a state $\mathbf{z} = (z_1, z_2, z_3)$, the birth rates $\lambda_i^K(\mathbf{z})$ for all $i \in \{1, 2, 3\}$ model sexual Mendelian reproduction

$$\lambda_{1}^{K}(\mathbf{z}) = Kb_{1}^{K} \left[\alpha \left(z_{1} + \frac{z_{2}}{4} \right) + (1 - \alpha) \frac{\left(z_{1} + \frac{z_{2}}{2} \right)^{2}}{n} \right],$$

$$\lambda_{2}^{K}(\mathbf{z}) = Kb_{2}^{K} \left[\alpha \frac{z_{2}}{2} + (1 - \alpha) 2 \frac{\left(z_{1} + \frac{z_{2}}{2} \right) \left(z_{3} + \frac{z_{2}}{2} \right)}{n} \right],$$

$$\lambda_{3}^{K}(\mathbf{z}) = Kb_{3}^{K} \left[\alpha \left(z_{3} + \frac{z_{2}}{4} \right) + (1 - \alpha) \frac{\left(z_{3} + \frac{z_{2}}{2} \right)^{2}}{n} \right].$$

with
$$n = z_1 + z_2 + z_3 \neq 0$$

If the population is at a state z, the rate $\mu_i^K(z)$ at which an individual with genotype i dies in the population is then given by:

$$\mu_1^K(z) = Kz_1(d^K + K(c^K z_1 + c^K z_2 + c^K z_3)),$$

$$\mu_2^K(z) = Kz_2(d^K + K(c^K z_1 + c^K z_2 + c^K z_3)),$$

$$\mu_3^K(z) = Kz_3(d^K + K(c^K z_1 + c^K z_2 + c^K z_3)).$$

The demographic parameter d^K (resp. $c^K > 0$) is the intrinsic death rate (resp. the competition rate) of individuals.

The demographic parameters b^K , d^K and c^K are scaled both by K and a parameter γ , the latter scaling the speed with which births and deaths occur, giving:

$$b_1^K = \gamma K + \rho,$$

$$b_2^K = \gamma K + \rho + h\sigma,$$

$$b_3^K = \gamma K + \rho + \sigma,$$

and

$$d^K = \gamma K$$
 and $c^K = \frac{\xi}{K}$.

- We follow the evolution of population mass not size with : $\mathcal{N}_t^K = Z_t^{1,K} + Z_t^{2,K} + Z_t^{3,K}$
- For large K the effect of the selection coefficient σ on b_i^K is inherently weak, but it will still have a macroscopic effect on population mass.

Limiting the diffusion process

The limiting population dynamics can be represented at time t by the couple (\mathcal{N}_t^K, X_t^K) giving the population size and the proportion of allele a. Coron 2014

$$\begin{split} d\mathcal{N}_t &= \sqrt{2\gamma \mathcal{N}_t} dB_t^1 \\ &+ \mathcal{N}_t \Big[\rho - \xi \mathcal{N}_t + \sigma X_t \Big(2h + X_t (1 - 2h) + F(1 - X_t) (1 - 2h) \Big) \Big] dt, \\ dX_t &= \sqrt{\frac{2\gamma X_t (1 - X_t)}{2\frac{\mathcal{N}_t}{1 + F}}} dB_t^2 \\ &+ \sigma X_t (1 - X_t) \Big[h + X_t (1 - 2h) + F(1 - X_t - h + 2X_t h) \Big] dt. \end{split} \tag{1b}$$

where $(B_t^1, B_t^2)_{t\geq 0}$ is a bi-dimensional standard Brownian motion.

Limiting the diffusion process

The limiting population dynamics can be represented at time t by the couple (\mathcal{N}_t^K, X_t^K) giving the population size and the proportion of allele a. Coron 2014

$$\begin{split} d\mathcal{N}_t &= \sqrt{2\gamma \mathcal{N}_t} dB_t^1 \\ &+ \mathcal{N}_t \Big[\rho - \xi \mathcal{N}_t + \sigma X_t \Big(2h + X_t (1 - 2h) + F(1 - X_t) (1 - 2h) \Big) \Big] dt, \\ dX_t &= \sqrt{\frac{2\gamma X_t (1 - X_t)}{2\frac{\mathcal{N}_t}{1 + F}}} dB_t^2 \\ &+ \sigma X_t (1 - X_t) \Big[h + X_t (1 - 2h) + F(1 - X_t - h + 2X_t h) \Big] dt. \end{split}$$

where $(B_t^1, B_t^2)_{t\geq 0}$ is a bi-dimensional standard Brownian motion.

Limiting the diffusion process

By setting γ to 1/2:

$$dX_{t} = \sqrt{\frac{X_{t}(1 - X_{t})}{2\frac{N_{t}}{1 + F}}} dB_{t}^{2} + \sigma X_{t}(1 - X_{t}) \left[h + X_{t}(1 - 2h) + F(1 - X_{t} - h + 2X_{t}h)\right] dt.$$

We have the same expression for changes in allelic frequencies as in Caballero and Hill (1992)

Simulations run

- Analytical approximations could not be made (bi-dimensional process)
- Numerical results were obtained using simulations of equations (5a) and (5b) were simulated using a script written in C++
- Simulations for fixed population size were also run

Neutral case ($\sigma = 0$): Population mass is independent of its genetic composition

$$d\mathcal{N}_t = \sqrt{\mathcal{N}_t} dB_t^1 + \mathcal{N}_t \left[\rho - \xi \mathcal{N}_t \right] dt, \tag{3a}$$

$$dX_t = \sqrt{\frac{X_t(1 - X_t)}{\frac{2N_t}{1 + F}}} dB_t^2.$$
 (3b)

The RHS of Equation (3a) cancels out when $\mathcal{N}_t = \mathcal{N}_{det}$ with

$$\mathcal{N}_{det} = \frac{\rho}{\xi}.$$
 (4)

Large population mass $(\mathcal{N}=100)$

Small population mass $(\mathcal{N}=1)$

$$d\mathcal{N}_{t} = \sqrt{\mathcal{N}_{t}} dB_{t}^{1} + \mathcal{N}_{t} \left[\rho - \xi \mathcal{N}_{t} \right] dt$$

$$d\mathcal{N}_t = \sqrt{\mathcal{N}_t} dB_t^1 + \mathcal{N}_t \left[\rho - \xi \mathcal{N}_t \right] dt$$

Effective population size

Our model:

$$dX_t = \sqrt{\frac{X_t(1-X_t)}{\frac{2N_t}{1+F}}}dB_t^2.$$

Neutral Wright-Fisher diffusion model:

$$dX_t = \sqrt{\frac{X_t(1 - X_t)}{2N_e^{WF}}} dB_t.$$

In order to compare our model with the Wright-Fisher Diffusion we need to define a fixed quantity \mathcal{N}_e .

Effective population size

We define N_e so as to ensure that both models are on the same scale

$$\mathcal{N}_e^{WF} = \frac{\mathbb{E}(T_{abs})}{2(1+F)\mathbb{E}\left[\int_0^{T_{abs}} \frac{1}{N_t} dt\right]},$$

Time to Absorption of Neutral alleles

Time to Fixation of Neutral alleles

$$\rho = 0.1$$
, $X_0 = 0.01$, $\alpha = 0$.

Population demography and absorption

Introducing Selection

$$d\mathcal{N}_{t} = \sqrt{2\gamma \mathcal{N}_{t}} dB_{t}^{1}$$

$$+ \mathcal{N}_{t} \Big[\rho - \xi \mathcal{N}_{t} + \sigma X_{t} \Big(2h + X_{t} (1 - 2h) + F (1 - X_{t}) (1 - 2h) \Big) \Big] dt,$$

$$dX_{t} = \sqrt{\frac{2\gamma X_{t} (1 - X_{t})}{2 \frac{\mathcal{N}_{t}}{1 + F}}} dB_{t}^{2}$$

$$+ \sigma X_{t} (1 - X_{t}) \Big[h + X_{t} (1 - 2h) + F (1 - X_{t} - h + 2X_{t} h) \Big] dt.$$
(5a)

Introducing Selection

Beneficial mutations ($\sigma = 0.1$):

Introducing Selection

Deleterious mutations ($\sigma = -0.1$):

Some quick conclusions...

- Demographic parameters can affect probabilities of fixation (independently of population size as such)
- Same (or similar) mean times to absorption (even in the presence of selection), but different distributions of times to fixation/loss
- For the diffusion approximation to be robust:
 - High birth rate
 - Weak selection