Approche génomique de l'impact des déversements de truites (*Salmo trutta*) domestiques dans les populations sauvages d'origine méditerranéenne

Maëva Leitwein

Séminaire de l'UMR CBGP 13/12/2016

Trout stocking

That's a wild one!

Enhancement of Atlantic and Mediterranean domestic strains into wild Mediterranean populations

Main Questions

What are the impacts of restocking on wild population structure and genetic diversity ?

Main Questions

What are the impacts of restocking on wild population structure and genetic diversity ?

Do domestic alleles introgress into wild populations ?

What is the fitness of the introgressed alleles ?

→ Development of a high density SNPs array by dd-RAD sequencing

- Wild populations
- Atlantic hatchery strains
- Mediterranean hatchery strains

3 populations

2 populations

30 individuals (3*10)

30 individuals (1*10 + 2*10)

Double digest RAD seq

(Paired End, 2*125 bp)

<u>Average number of reads per individual :</u>

12 millions

Workflow

\rightarrow De novo

- \rightarrow Reference mapping
- \rightarrow Comparison between both methods
- \rightarrow Estimation of nucleotide diversity
- \rightarrow Population structure

De novo assembly

m= Minimum depth of coverage required to create a stack

M= Maximum distance allowed between stacks

SNP= Single Nucleotide polymorphism

De novo assembly

m= Minimum depth of coverage required to create a stack

Stack 1

M= Maximum distance allowed between stacks

n= number of mismatches allowed between loci when generating the catalog

Cstacks

De novo assembly

m= Minimum depth of coverage required to create a stack

M= Maximum distance allowed between stacks

n= number of mismatches allowed between loci when generating the catalog

Sstacks

Match to the catalog

33.9

23.0

11.6

85.5

Denovo VS Reference mapping

Denovo VS Reference mapping

How many loci are common ?

De novo loci from catalog

>5
CGGCATACAGGCCAGCCAGTGTAAAGCAATCTAATATAACATTTTTATCTATGTCAGTTCTAACTGTTTGT
>6
AATTCTTCAGGTAAGGGTTAAGGTTTGGGATAGGCCTAAGACAAAAATCTCAAAAACAACTTTCTATCACT
>8
CGGAGGACAACAAGATGCAACAAATCAAGTTTTTTTTTT
>11
CGGATCCCCCCGATACTGATGCTCGGTCTGGAGGTCTACGATTTCTAGGCTTCACTGAACGGGATTCATTA
>15
AATTCACATATTAATGACATTAGTCAATGGTGCCACCTGTCAATGATTTTAGAGGGAGG
>17
CGGTGAAAATCTGTCCTTTGTTCTGATGAGTCACATTTGAGATTTGGTTCCAACCGCCTTGTTTACAGATG

Sam alignement file

5 16	CM003	298.1	41441601	60	2S118M	*	Θ	Θ	CCGAATTCAACACAGG
ΤΑΑΑΑΑΤGTT	ATATTAGATTG	CTTTACACTGG	CTGGCCTGTATGCCG	*	NM:i:2	MD:Z:351	F46C35	AS:i:108	XS:i:21
6 16	CM003	291.1	64273448	60	120M	*	Θ	Θ	TACGGTGTAAACATCT
TTTTTGTCTT#	AGGCCTATCCC	AAACCTTAACC	CTTACCTGAAGAATT	*	NM:i:2	MD:Z:270	C31T60	AS:i:110	XS:i:52
8 16	AGKD0	4018804.1	7718 60	114M6S	*	Θ	Θ	GATGAACT	CAGTGTCAAGGGAAGT
AGAAAAAAAAA	CTTGATTTGTT	GCATCTTGTTG	TCCTCCG *	NM:i:2	MD:Z:161	106C5	AS:i:107	7	XS:i:50
11 0	CM003	300.1	46973878	23	24M13D15	5M7D49M20)32M	*	ΘΘ
AACGGGATTC	ATTATCATCAA	ACACGGACTGT	TGTCTGATTACACACA	CCTGGTTC	CCATTTC	*	NM:i:23	MD:Z:1A2	2^ATTCTGGTCACCA1
500100 01M0	DEOMOOC 4.								

87% (63 164) loci mapped (104 139 SNPs)

Identifying loci in common

Denovo VS Reference mapping 250000 Loci in common Denovo Ref_map 196639 200000 150000 121016 93968 100000 72801 + 24 % 50000 80% in 57% in common common 0 Number of RAD loci Number of SNPs How are they distributed on chromosomes?

Distribution of brown trout loci along *S. salar* LGs

Ref_map

De novo

LGs

Distribution of Brown trout loci along S. salar LGs

 \rightarrow Homogeneous distribution

 \rightarrow Lower density at LGs extremities : paralogous loci ?

Workflow

\rightarrow De novo

- → Reference mapping
- \rightarrow Comparison between both methods
- \rightarrow Estimation of nucleotide diversity
- \rightarrow Population structure

Distribution of brown trout nucleotide diversity along Atlantic salmon (*S. salar*) linkage groups

Atlantic strain , mean $\pi = 0.0040$

Mediterranean strain, mean π = 0.0025

Wild Mediterranean trout, mean $\pi = 0.0049$

S. trutta

Distribution of brown trout nucleotide diversity along Atlantic salmon (*S. salar*) linkage groups

Atlantic strain , mean $\pi = 0.0040$

Mediterranean strain, mean π = 0.0025

Wild Mediterranean trout, mean $\pi = 0.0049$

 \rightarrow Lower average diversity for the Mediterranean strain

 \rightarrow 'Classical' higher diversity at LGs extremities

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

→ Large number of SNPs discovered; similar genome-wide distribution along LGs using both approaches

→ Lower mapping density and higher nucleotide diversity at LGs extremities → footprint of residual tetrasomy in these regions ?

→The Mediterranean hatchery strain is twice less diversified than wild Mediterranean samples

 \rightarrow Presence of admixed individuals in wild populations

What are the distribution patterns of admixture within the genome ?

What are the distribution patterns of admixture within the genome ?

What are the distribution patterns of admixture within the genome ?

To estimate the introgression rate along the genome we need :

- -> to assess the introgression at haplotype level
- -> to infer the recombination rate landscape

What are the distribution patterns of admixture within the genome ?

To estimate the introgression rate along the genome we need :

- -> to assess the introgression at haplotype level
- -> to infer the recombination rate landscape

Admixture Non-admixed Long tracts Atlantic hatchery population (recent ancestry) strain Wild Mediterranean

Time

High density S. trutta linkage map

Gharbi et al.'s (2006) brown trout linkage map

- \rightarrow Based on microsatellite (N = 288) + allozyme (N= 13) markers
- → Incomplete: 37 LGs found but 40 LGs expected from karyotypic studies
- \rightarrow Might be improved by high-throughput genomic techniques

The hybrid linkage map design

A new Salmo trutta linkage map

them!

Centromere location and chromosome type

Limborg et al., 2015

Centromere location and chromosome type

Acrocentric

Metacentric

Limborg et al., 2015

A new Salmo trutta linkage map

them!

MapComp Sutherland et al. (2016)

Fig. 1. Schematic of MAPCOMP using a reference genome to pair markers. MAPCOMP compares genetic maps from two different species by mapping marker sequences against a reference genome, then retaining high quality mappings that only hit against one locus in the genome. Markers from each species are paired if they hit against the same contig/scaffold by taking the closest two markers together as each pair. Each marker is paired without replacement, and so any other marker that was second closest to the now-paired marker is discarded. This method captures identical markers (white star in image) and non-identical markers (grey stars). Finally, the linkage group and cM position of each marker is plotted in an Oxford grid. Note that the marker names and contig ID in the schematic are for demonstration purposes only and do not reflect actual pairings.

Syntenies between *S. salar* and *trutta*

T38 T40

<u>S. Salar</u>

58

59

S

<u>S. trutta</u>

Tsai et al., 2016 Lien et al., 2016

<u>S. Salar</u>

39

Chromosomal rearrangements

		Fusion	Fission
а	Salmo before speciation	5	3
b	<i>S. salar</i> after speciation	13	2
с	S. trutta after speciation	0	0

Nucleotide divergence between S. salar and trutta

 $\pi_{\rm b}$: nucleotide diversity between *S. salar* and *S. trutta* $\pi_{\rm w}$: nucleotide diversity within *S. trutta*

Nucleotide divergence between S. salar and trutta

$$d = \pi_{\rm b} - \pi_{\rm w}$$

 $\pi_{\rm b}$: nucleotide diversity between *S. salar* and *S. trutta* $\pi_{\rm w}$: nucleotide diversity within *S. trutta*

d = 0.02285 - 0.0041

5.94% (Bernatchez *et al.,* 1992)

Estimate of recombination rate in the brown trout genome

Rezvoy et al. 2007

Estimate of recombination rate in the brown trout genome

Total mean recombination rate = 0.88 cM/Mb

Recombination rate estimation

Recombination rate estimation

Genetic distance cM

Correlation between the nucleotide diversity and the recombination rate

Recombination rate (cM/Mb)

Part 2 Concluding remarks

- → Strong (and expected...) synteny between S. salar and S. trutta
- → A improved linkage map is available providing information on **chromosomal rearrangements**:

translocation, fissions, Robertsonian rearrangements between S. salar and S. trutta

- → Positive correlation between the recombination rate and the nucleotidic diversity
- \rightarrow The estimation of the (local) **recombination rate** is accessible in *S. trutta*

→ Does the **recombination** landscape **affect local introgression rate** along the genome ?

 \rightarrow To identify admixed individuals in the wild:

(Dom ATL N= 61 Dom Med N=41)

Racimo et al. (2015)

 \rightarrow To identify introgressed haplotypes

→To use the introgressed haplotype
distribution size as a proxy of the timing of the introgression

(shorter haplotypes if more

generations/recombination events)

Identification of "pure" individuals for reference

with Admixture

ELAI: Efficient Local Ancestry Inference

54

Guan Y., 2014

 \rightarrow To determine the introgression rate along the genome

 \rightarrow To determine the introgression rate along the genome

 \rightarrow To find signatures of positive or negative introgression

 \rightarrow To determine the introgression rate along the genome

 \rightarrow To find signatures of positive or negative introgression

 \rightarrow To associate the recombination landscape to the introgression rate

Eríc Ravel

Juliette Pouzadoux

Eríck desmaraís

Maríne Rohmer

Julíen Veysíer, Khalíd Belkír, Remy Dernat 59

Patrick Berrebi

Bruno Guínand

Pierre-Alexandre Gagnaire

NF = 86 -96 Expected NF (karyotype studies) = 96-104

😠 JoinMap 4 - Map2familles	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				_ 0
File Edit Dataset Join Population Grouping	Group Map Ca	Iculate Options	Help																			
□≥№ ⊾₽€		🖪 i 🕐																				
Project	Man Chart Man	Man (text) Da	ta Mean Chisgua	re Contribe	Concture Proh	bilition C	anot Probe	. Locue N		anot Prob	e : Indiv M	eane Ì Le	cue Cenet	Erec]								
-P batch 11 C2 130	map chair map		ine inean chisqua		senotype i ro <u>b</u> a		enor roba	S. LUCUS IV		enor i top	S. mujv. w		cus Genor	ileg.								
P batch_11_C4_130	Nr Lo	cus Segreg	Ph Classificati	Position 10	102 103 104	105 106	107 108 1	09 110 1	11 112 1	113 114 1	115 116 1	17 118 1	19 120 12	1 122 12	3 124 125	126 127 1	28 129 130	131 132 13	3 134 135	136 137 138	3 139 140 14	1 142 144 145 14
D P b11_C2filtre_130	(Individual:)	05555	(4) (22.22)	Pr.	Pr Pr Pr	Pr Pr	Pr Pr F	r Pr P	r Pr P	Yr Pr F	Yr Pr F	r Pr Pi	r Pr Pr.	Pr Pr.	Pr Pr	Pr., Pr., P	r Pr Pr	Pr Pr Pr	Pr Pr	Pr Pr Pr	Pr Pr Pr	Pr Pr Pr Pr
🛓 🔁 Grouping 1	1082 3	85556 <nnxnp></nnxnp>	{-1} (nn,np)	69.260 nn	nn nn np	nn nn	np np r	in n	n nn n	in np n	ip np n	n nn ni	n np	np	np np	np nn n	p np nn	ip nn np	np np	np nn nn	np nn np	
🔁 - 🧱 Group 1	2011 2	19255 <nnxnp></nnxnp>	{-1} (nn,np)	72.690 pp	nn nn np		np np r		n nn n n nn n	in np n	ip ii		n np np	np np	np np	np nn n	p np nn	np nn np	np np	np nn nn	np nn np	
🖻 🎇 Mapping 1	2775 3	85610 <nnvnn></nnvnn>	{-1} (nn,np)	72.608 nn		00 00								np				n nn nr				
	1080 3	85620 <nnxnp></nnxnp>	{-1} (nn,np)	72,796 nn		00 00			n nn n	n np -	- 00 0							n nn nr			np nn	
📕 Map 2	3830 3	85636 <nnxnp></nnxnp>	{-1} (nn.np)	72.863 nn	nn nn np	nn nn	np r	n np n	n nn n	in n			n no no	np np	np np	np nn n		מח מח מר		np nn nn	np nn nr	
⊟- <mark></mark> Group 2	3928 1	37190 <nnxnp></nnxnp>	{-1} (nn.np)	72.881 nn	nn nn np	nn nn	np np n	n np n	n nn n	in np -	- np n	p nn	np np	np np	np	np nn n	p np nn	מת מת מר		np nn nn	np nn ni	nn np nn nr
🖻 🚰 Mapping 1	1415 3	85716 <nnxnp></nnxnp>	{-1} (nn.np)	73.735 nn	nn nn np	nn nn	np np r	n np n	n nn n	n np n	n an a	p nn ni	n np np	np	nn np	np nn n	p np nn	np np np	o np	np nn nn	np nn ni	nn np nn nr
	3173 3	85714 <nnxnp></nnxnp>	{-1} (nn,np)	75.251 nn	nn nn np	nn nn	np np r	n np n	n nn n	in n	ip np n	pnnni	n np np	np np	nn np	np nn n	p np nn	nn np np	np np	np nn nn	np nn nr	nn np nn nn
Map 2	2989 3	85713 <nnxnp></nnxnp>	{-1} (nn,np)	75.337 nn	nn nn np	nn nn	- np r	n np n	n nn n	in n	ip np n	p nn ni	n np np	np np	nn np	np nn n	p np nn	nn np np	np np	np nn nn	np nn nr	nn np nn nr
The map 3	2350 3	85624 <nnxnp></nnxnp>	{-1} (nn,np)	76.055 nn	nn nn np	nn nn	np np r	n np n	n nn n	in np -	n	p nn ni	n np np	np np	np np	np <mark>nn</mark> n	p np <mark>nn</mark>	np np <mark>nr</mark>	np np	np nn	np nn nr	o np nr
Group 3	1531 3	86030 <nnxnp></nnxnp>	{-1} (nn,np)	81.011 nn	nn nn np	nn nn	np r	in np n	n nn n	in np -	np n	p nn ni	n np np	nn nn	np np	np nn n	n np nn	np np np	np np	np nn nn	np np nr	o nn np nn
Mapping 1	584 3	86929 <nnxnp></nnxnp>	{-1} (nn,np)	85.926 np	nn nn np	nn nn	np np r	in np n	n nn n	in np n	ip np n	p nn ni	n np nn	nn nn	np np	np nn n	n np nn	np - np	י <mark>nn n</mark> p	np nn nn	nn np	nn np nn nr
Map 1	2004 3	86872 <nnxnp></nnxnp>	{-1} (nn,np)	86.482 np	nn nn np	nn nn	np r	in np n	n nn n	in np n	in np n	pnn	np nn	nn	np np	np n	n np nn	np np np) np np	np nn nn	nn np	nn np nn nr
+ Map 2	3862 3	86931 <nnxnp></nnxnp>	{-0} (nn,np)	87.133 nn	np np nn	np np	np nn r	ip nn n	p np n	ip <mark>nn</mark> n	ip nn n	n np nj	p <mark>nn</mark> np	np np	nn nn	nn np n	p nn np	nn nn nr	i np nn	nn np np	np nn	np nn np np
Group 4	2370 3	86874 <nnxnp></nnxnp>	{-0} (nn,np)	87.497 nn	np np nn	np np	nn r	ip nn n	p np n	ip <mark>nn</mark> n	ip nn n	n np	nn np	np	nn nn	nn n	p nn np	nn nn nr	i nn nn	nn np np	np nn	np <mark>nn</mark> np np
Apping 1	24 3	86917 <nnxnp></nnxnp>	{-0} (nn,np)	87.918 nn	np np nn	np np	np nn r	ip nn n	p np n	ip nn n	ip nn n	n np nj	p nn np	nn np	nn nn	nn np n	p nn np	nn nn nr	i np nn	nn np np	np nn np	o np <mark>nn</mark> np np
🕀 🏦 Map 1	2298 3	86945 <nnxnp></nnxnp>	{-0} (nn,np)	88.315 nn	np np nn	np np	np nn r	ip nn n	pnpn	ip nn -	- nn n	n np nj	p nn np	np np	nn nn	nn np n	p nn np	nn nn nr	i np nn	nn np np	np nn np	o np <mark>nn</mark> np np
Hap 2	866 3	86944 <nnxnp></nnxnp>	{-0} (nn,np)	88.321 nn	np np nn	np np	np nn -	- nn n	p np n	ip nn -	- nn n	n np nj	p nn np	np	nn nn	nn np	nn np	- nn nr	i np nn	nn np np	np nn np	o np <mark>nn</mark> np np
E-III Group 5	2013 3	86896 <nnxnp></nnxnp>	{-0} (nn,np)	88.481 nn	np np nn	np	np nn r	ip nn n	p np n	ip nn n	ip nn n	n np nj	p nn np	np	nn	nn np n	p nn np	nn nn nr	np nn	nn np np	np nn np	o np nn np np
🗄 🎇 Mapping 1	04 3	00095 <mxmp></mxmp>	{-0} (nn,np)	80.162 pp	np np nn	np	np nn r		р пр п				p nn np	np		nn np n	p nn np		np nn	nn np np		
# Map 1	2041 3	87001 <111,11p>	{-0} (m,np)	89.105 mm		np np			p np n								n nn nn	n nn nr				
	1442 3	87624 <nnxnp></nnxnp>	{-0} (nn np)	90.039 nn		np np									nn nn			nn nn nr				
	962 3	87947 <nnxnp></nnxnp>	{-1} (nn.np)	93.345 np	nn nn np	nn nn	np np r	n np n	n nn n	in n	ip - n	p nn ni	n np nn	nn nn	nn np	np nn n	n np nn	מת מת מר	o nn np	np nn nn		nn np nn
Group 6	239 3	88394 <imxii></imxii>	{1-} (II,Im)	0.000 Im	Im Im Im	11	Im II I	I Im Ir	n Im II		- Im Ir	n Im II	ll Im	Im Im	11 11	II Im Ir	n Im Im	m II II	II Im	Im Im Im	- 11	II Im - II
🖻 🎇 Mapping 1	2784 3	87933 <imxli></imxli>	{0-} (II,Im)	26.335 Im	li im li	ll Im	Im II I	m II II	II Ir	m II II	m Im Ir	n II In	n Im Im	Im	Im Im	Im Im II	11 11	l II In	i Im Im	0 0 0	II Im II	Im Im II Im
map 1	2658 3	87283 <imxll></imxll>	{0-} (II,Im)	39.760 Im	Im Im Im	ll Im	Im I	m II II	ll Ir	m II li	m lı	n II In	n II Im	lm II	Im	ll Im II	11 11	l II In	i Im Im	0 0 0	Im II	- Im II Im
Han 2	35 3	87284 <imxii></imxii>	{0-} (II,Im)	39.811 Im	Im Im Im	ll Im	lm I	m II II	ll Ir	m II li	m – II	n II In	n II Im	lm II	Im Im	ll Im II	11 11	l II Im	i Im Im	1 1 1	Im II	- Im II Im
map 3	1225 3	86856 <lmxll></lmxll>	{0-} (II,Im)	51.710 Im	Im Im Im	ll Im	lm II I	I II II	lm Ir	m II li	m II	m II II	li im	lm II	Im Im	Im II	II II -	m II Im	i Im Im	0 0 0	Im Im II	li im ii im
	3568 3	86529 <lmxll></lmxll>	{0-} (II,Im)	53.119 Im	Im Im Im	ll Im	lm II I	I II II	Im Ir	m II li	m li	n II II	li im	Im	Im Im	ll Im II	II II -	m II Im	i Im Im	0 0 0	lm II	li im ii im
	3411 3	86528 <imxii></imxii>	{0-} (II,Im)	53.140 Im	Im Im Im	ll Im	lm II I		lm Ir	m II li	m Ir	n II II	li im	lm	Im Im	ll Im II	11 11	m II Im	i Im Im	1 1 1	lm II	li im ii im
Map 2	1745 3	86642 <lmxll></lmxll>	{1-} (II,Im)	53.766 II	0 0 0	Im II	ll Im I	m Im Ir	n II II	i im li		Im In	n Im II	li im	II	lm II Ir	n Im Im	I Im II		Im Im Im	II II In	n Im II Im II
🗮 Map 3	1841	2982 <imxll></imxll>	{1-} (II,Im)	54.043 II	II II	Im II	Im I	m Im Ir	n II	Im II		Im In	n Im II	Im	1 1	Im II Ir	n Im Im	I Im	1 -	Im Im Im	II II Im	n Im II Im II
Group 8	3445 3	86591 <imxii></imxii>	{1-} (II,Im)	54.337	0 0 0	Im II	li im i	m Im Ir	n II II	Im I		Im In	n Im II	li im		Im II Ir	n Im Im	I Im II		Im Im Im		n Im II Im II
🖻 🎇 Mapping 1	3001 3	86601 <imxii></imxii>	{1-} (II,Im)	54.409 11		im II	II IM I	m im ir	n	i in ii		im	im ii			im II Ir	n im im	i im ii		im im im		
	1290	15382 <imxii></imxii>	{1-} (II,Im)	54.962 II		Im II	li im i	m im ir m im ir				im in	n im ii		11	im II Ir	n im im			im im im		
# Map 2	1716 2		{1-} (II,IM) {1.} (ILIM)	55 200 II	u u	Im II	li im i	m im ir	n - n	I	1	im in	n Im II		1 II	im ii ir	n im im			im im im		
🗰 Map 3	3672 2	10453 <imxii></imxii>	{1-} (ILIm)	56.311		Im II	Im I	m Im Ir	n II II	Im I	- 1	Im In	n Im II			Im II Ir	n Im Im			Im Im Im		
🖨 📴 Group 9	3655 2	74548 <imxii></imxii>	{1-} (ILIm)	58.674		Im II	II Im I	m Im Ir	n II II	Im I	Im II	Im In	n Im II	- Im		Im II Ir	n Im Im	I Im II		Im Im Im		
🖻 🎇 Mapping 1	1935 3	84895 <hkxhk></hkxhk>	{01} (hh.hk.kk)	55.760 hk	hk kk kk	hh kk	hk hk h	h hh h	h hk h	K k	k kk h	k hh hi	h hk kk	kk hk	kk kk	hk hk h	k hk hh	k hh kk	kk kk	hk hh hh	kk hk hł	hh kk hh hk
	279 3	84893 <hkxhk></hkxhk>	{01} (hh,hk,kk)	55.901 hk	hk kk kk	hh kk	hk hk h	h hh h	h hk h	k hk k	ik kk h	k hh hi	h hk kk	kk hk	kk kk	hk hk h	k hk hh	k hh kk	kk kk	hk hh hh	kk hk hl	hh kk hh hk
map 2	1194 3	84896 <hkxhk></hkxhk>	{10} (hh,hk,kk)	56.082 hk	hk hh hh	kk hh	hk hk k	k kk k	k hk h	ik h	h hh h	k kk kl	k hk hh	hh hk	hh hh	hk hk h	k hk kk	nh kk hh	hh hh	hk kk kk	hh hk hi	k kk hh kk hk
I Map 3	1569 3	85149 <hkxhk></hkxhk>	{11} (hh,hk,kk)	62.558 hh	hh hh hk	hk hk	hk kk h	nk hk h	k hh h	h kk h	ik hk h	h hk hi	k kk hk	hk kk	hk hk	kk hh k	k kk hk	k hk hk	hk hk	kk hk hk	hk hh kk	hk hk hk hh
Group 10	1021 2	76023 <efxeg></efxeg>	{01} (ee,ef,eg,fg)	47.639 ef	ef fg fg	ee	- eg e	eg ee e	e ef e	ef eg -	- fg e	f ee ee	e eg fg	ef	ef fg	ee fg e	g eg ee	g ee	ef fg	ee ee eg	fg fg er	ee ee ef
	2738 3	84977 <efxeq></efxeq>	(01) (ee ef eq fq)	57 740 ef	ef ef fa	ee fa	ea e	e ee e	e ef e	f ea f	a fa e	f ee ef	f ea fa	fa ea	fa fa	eg ef e	a ea ee	a ee fa	fa fa	eg ee ee	fa ef er	ee fa ee ef

- \rightarrow Detecting hybrid individuals and evaluating the amount of admixture for all individuals samples (N = 184)
- \rightarrow Assess the introgression patterns of individual loci along the genome and identify outliers SNPs
- \rightarrow Use the local recombination landscape to determine linkage disequilibrium between loci
- \rightarrow Assess the introgression at haplotype level then identify introgressed haplotype into wild individuals
- \rightarrow Use the introgressed haplotype size as a proxy of the timing of the introgression
- \rightarrow Determine the introgression rate along the genome
- \rightarrow Find signatures of adaptive introgression or barriers to gene flow